Our T200 Thruster was originally introduced in our 2014 Kickstarter campaign! Since then, it’s become the most popular underwater thruster in the world and there are thousands of them powering all sorts of marine ROVs, AUVs, boats, and even human-carrying vehicles!
T200 Thruster
From: $200.00
The T200 Thruster is the world’s most popular underwater thruster for ROVs, AUVs, surface vessels, and more! Its patented flooded motor design makes it powerful, efficient, compact, and affordable. The T200 is in use on thousands of marine robotic vehicles around the world including the BlueROV2.
Select options:
Quantity | 1 - 9 | 10 - 24 | 25 - 49 | 50 - 149 | 150+ |
---|---|---|---|---|---|
Price | $200.00 | $190.00 | $180.00 | $170.00 | $160.00 |
Product Description
ROV, AUV, and Underwater Drone Thruster Applications
The T200 Thruster is used on a number of underwater ROVs, AUVs, and underwater drones including our flagship underwater ROV, the BlueROV2. The thrusters provide compact but powerful underwater propulsion on the ROV.
The thrusters are also used on AUV platforms such as the RangerBot from QUT and many others, making autonomous underwater robotics an affordable possibility for researchers, scientists, and businesses.
The T200 Thruster powers a number of underwater drones designed to inspect, explore, and film underwater infrastructure, ships, aquaculture pens, and shipwrecks.
Thruster Technology
The T200 Thruster uses our patented underwater thruster design consisting of a fully-flooded brushless motor with encapsulated motor windings and stator as well as coated magnets and rotor. The thruster body and propeller are made from tough polycarbonate plastic and the only exposed metal components are made from marine grade 316 stainless steel.
The fully-flooded design is unique compared to thrusters existing before the T200. It allows the motor to be water-cooled and the plastic bushings to be water-lubricated. It eliminates the need for shaft seals, magnetic couplings, and air- or oil-filled compartments, making the thruster naturally pressure tolerant. The design is compact and has a minimal number of parts so that we can offer it at an affordable price.
The core motor design is a three-phase brushless outrunner motor, similar to what you’d see on drones and RC airplanes, but optimized for underwater use. A sensorless brushless electronic speed controller (ESC) like our Basic ESC is required to run the thruster in all situations. It’s optimized to run at a voltage of 16v (such as a 4s lithium-ion battery pack), but can run at a range of voltages. Check out the detailed performance charts on the Technical Details tab for more information.
USVs, Kayaks, and SUPs Thruster Applications
The T200 Thruster can propel robotic unmanned surface vessels (USVs) and flexible mounting options make it easy to turn just about anything that floats into a USV! We’ve seen it used on anything from a boogie board to a commercial grade survey vessel.
Combined with a battery, ESC, and the Thruster Commander, it’s easy to use on a kayak or stand-up paddleboard (SUP) as well! Two T200s on a paddleboard will get it moving at over 3 knots!
MATE, RoboSub, and Robotics Competition Applications
In addition to commercial and research applications, the T200 Thruster is the thruster of choice for MATE ROV competitions, the RoboSub AUV competition, and other competitions including RoboBoat, European Robotics League (ERL), and the Singapore AUV Challenge (SAUVC). The T200 provides an affordable and reliable thruster option to replace the bilge pump motors and expensive thrusters used in the past.
Using the T200 Thruster
The T200 Thruster comes ready to use and includes both clockwise and counterclockwise propellers. In addition to the thruster, you need a speed controller like our Basic ESC, a power source like our battery, and a signal source, such as our Thruster Commander, an RC radio receiver, or a microcontroller like the Arduino or Raspberry Pi.
There is a wealth of available technical information, charts, code examples, and tutorials on the Technical Details and Learn sections of this page as well as support through our online forum community. There you can find users doing all sorts of interesting things ranging from generative ROV design to freediving jet boots to lionfish hunting robots!
We’re excited to see what you do with it!
Product Description
Our T200 Thruster was originally introduced in our 2014 Kickstarter campaign! Since then, it’s become the most popular underwater thruster in the world and there are thousands of them powering all sorts of marine ROVs, AUVs, boats, and even human-carrying vehicles!
ROV, AUV, and Underwater Drone Thruster Applications
The T200 Thruster is used on a number of underwater ROVs, AUVs, and underwater drones including our flagship underwater ROV, the BlueROV2. The thrusters provide compact but powerful underwater propulsion on the ROV.
The thrusters are also used on AUV platforms such as the RangerBot from QUT and many others, making autonomous underwater robotics an affordable possibility for researchers, scientists, and businesses.
The T200 Thruster powers a number of underwater drones designed to inspect, explore, and film underwater infrastructure, ships, aquaculture pens, and shipwrecks.
Thruster Technology
The T200 Thruster uses our patented underwater thruster design consisting of a fully-flooded brushless motor with encapsulated motor windings and stator as well as coated magnets and rotor. The thruster body and propeller are made from tough polycarbonate plastic and the only exposed metal components are made from marine grade 316 stainless steel.
The fully-flooded design is unique compared to thrusters existing before the T200. It allows the motor to be water-cooled and the plastic bushings to be water-lubricated. It eliminates the need for shaft seals, magnetic couplings, and air- or oil-filled compartments, making the thruster naturally pressure tolerant. The design is compact and has a minimal number of parts so that we can offer it at an affordable price.
The core motor design is a three-phase brushless outrunner motor, similar to what you’d see on drones and RC airplanes, but optimized for underwater use. A sensorless brushless electronic speed controller (ESC) like our Basic ESC is required to run the thruster in all situations. It’s optimized to run at a voltage of 16v (such as a 4s lithium-ion battery pack), but can run at a range of voltages. Check out the detailed performance charts on the Technical Details tab for more information.
USVs, Kayaks, and SUPs Thruster Applications
The T200 Thruster can propel robotic unmanned surface vessels (USVs) and flexible mounting options make it easy to turn just about anything that floats into a USV! We’ve seen it used on anything from a boogie board to a commercial grade survey vessel.
Combined with a battery, ESC, and the Thruster Commander, it’s easy to use on a kayak or stand-up paddleboard (SUP) as well! Two T200s on a paddleboard will get it moving at over 3 knots!
MATE, RoboSub, and Robotics Competition Applications
In addition to commercial and research applications, the T200 Thruster is the thruster of choice for MATE ROV competitions, the RoboSub AUV competition, and other competitions including RoboBoat, European Robotics League (ERL), and the Singapore AUV Challenge (SAUVC). The T200 provides an affordable and reliable thruster option to replace the bilge pump motors and expensive thrusters used in the past.
Using the T200 Thruster
The T200 Thruster comes ready to use and includes both clockwise and counterclockwise propellers. In addition to the thruster, you need a speed controller like our Basic ESC, a power source like our battery, and a signal source, such as our Thruster Commander, an RC radio receiver, or a microcontroller like the Arduino or Raspberry Pi.
There is a wealth of available technical information, charts, code examples, and tutorials on the Technical Details and Learn sections of this page as well as support through our online forum community. There you can find users doing all sorts of interesting things ranging from generative ROV design to freediving jet boots to lionfish hunting robots!
We’re excited to see what you do with it!
- 1 x T200 Thruster
- 1 x Clockwise and counterclockwise propeller
Specifications
Parameter | Value | |
---|---|---|
Performance | ||
Full Throttle FWD/REV Thrust @ 12 V | 3.71 / 2.92 kg f | 8.2 / 6.4 lb f |
Full Throttle FWD/REV Thrust @ Nominal (16 V) | 5.25 / 4.1 kg f | 11.6 / 9.0 lb f |
Full Throttle FWD/REV Thrust @ Maximum (20 V) | 6.7 / 5.05 kg f | 14.8 / 11.1 lb f |
Minimum Thrust | 0.02 kg f* | 0.05 lb f* |
Electrical | ||
Operating Voltage | 7-20 volts | |
Full Throttle Current (Power) @ 12 V | 17 Amps (205 Watts) | |
Full Throttle Current (Power) @ Nominal (16 V) | 24 Amps (390 Watts) | |
Full Throttle Current (Power) @ Maximum (20 V) | 32 Amps (645 Watts) | |
Physical | ||
Length | 113 mm | 4.45 in |
Diameter | 100 mm | 3.9 in |
Wetted Materials | Polycarbonate Epoxy Stainless steel Plastic Polyurethane |
|
Weight in Air (with 1m cable) | 344 g | 0.76 lb |
Weight in Water (with 1m cable) | 156 g | 0.34 lb |
Propeller Diameter | 76 mm | 3.0 in |
Mounting Hole Threads | M3 x 0.5 | |
Mounting Hole Spacing | 19 mm | 0.75 in |
Cable | ||
Cable Used | CAB-PUR-3-16AWG | |
Cable Length (Standard T200) | 1.0 m | 39 in |
Cable Length (T200 BlueROV2 Spare) | 0.71 m | 28 in |
Conductor Gauge | 16 AWG | |
Compatible WetLink Penetrator | WLP-M10-6.5MM-LC | |
*Values limited by ESC used to drive thruster. |
Note that nominal operation at 12-16 V is recommended for the best balance of thrust and efficiency, though operation at up to 20 V is allowable. Exceeding 20 V is not within the rating and not recommended, please see here for more information.
For more detailed performance specifications, including thrust, RPM, power, and efficiency at various throttle levels and supply voltages from 10-20 V, please see the performance charts below.
Performance Charts
Click on the legend to hide or show the data set for each voltage. All the raw data and notes on the testing procedure used to generate these charts can be downloaded here:
T200-Public-Performance-Data-10-20V-September-2019 (.xlsx)
Thrust at 10–20 V
Current Draw at 10–20 V
Efficiency at 10–20 V
Thrust and Power at 10–20 V
RPM at 10–20 V
2D Drawings
3D Models
T200-THRUSTER-R1 (.zip)
Revision History
14 March 2023
- Serial number laser marking implemented
12 February 2021
- R2 - Initial Release
- Changed thruster cable conductors from 18 AWG to 16 AWG
08 November 2019
- Changed stator from being epoxy coated to fully potted
- Added cooling holes to propellers
15 September 2019
- Changed finish of polycarbonate components from glossy to matte
19 September 2014
- R1 - Initial Release
Quick Start
1. Connect thruster wires to ESC motor phase wires.
2. Connect the ESC to a power source.
3. Connect the ESC signal wire to a signal source.
4. Send a signal and the thruster will start spinning. That’s it.
Important Notes
Guides
Thruster User Guide
Cable Stripping
Guide to the Thruster Commander
What is the depth rating of the T200 thruster?
We do not have an official depth rating for our thrusters, as we haven’t found a limit yet. Due to the unique fully flooded design where water freely moves throughout the thruster internals, pressure isn’t much of a concern. There are no air cavities to compress, or seals of any kind. Our thrusters will function well to at least 500m or so.
Do I need the Thruster Commander to use these?
Not at all! The Thruster Commander is just one possible solution for simple manual controls. Depending on your project, a different control system could be much more appropriate. Please visit the "Learn" section of this product page for more examples of the types of devices that can be used.
One of my thrusters is much louder than the others or is making a strange sound, is it defective?
It’s perfectly normal to have a loud thruster! Our thrusters use solid plastic bushings (we also refer to these as bearings), which due to the tolerances of the bearings and the metal rotor shafts, can allow the shaft to move slightly in the bearing causing variation in how different thrusters sound. Rest assured, each one of our thrusters is tested multiple times during production to ensure proper operation.
The thrusters may be especially loud when they are run dry (in air). Any noise is significantly reduced or eliminated when operated in water. Water serves as a lubricant and coolant for the bearings, allowing smooth operation. Also, be sure not to run the thrusters in air for more than a few seconds as this can permanently damage the thruster by overheating the bearings.
Do I really need an ESC? I only want to turn the thrusters on and off and don’t need to control the speed.
Yes! You absolutely need an ESC. At the core of a thruster is a brushless DC (BLDC) motor. Like any other BLDC motor, a brushless ESC is required to energize the motor phases in the correct timing to drive the motor. If you try to use a thruster like a regular brushed motor, you’ll just end up with a broken thruster. You can read more about the differences between brushed and brushless DC motors here.
Can I connect more than one thruster to an ESC?
No, one ESC is needed for each thruster. In order to properly drive the motor, the ESC needs to accurately sense the position of the rotor as it is spinning, this is not possible with more than one motor.
Can I use a voltage higher than 20V DC?
The short answer is no, 20V is the maximum recommended operating voltage for the T200 thruster. Operating at a higher voltage will increase wear and decrease thruster lifespan beyond the level we can officially support, therefore voiding any warranty. You can read the longer, more detailed answer about the effects of using higher voltages here.
What is the lifespan or mean time between failures of the T200? How long can they run continuously?
It depends! Because our customers operate in varying conditions across a wide range of use cases, there is no one expected total lifespan that would apply to all situations. Factors such as water quality, sediment density, particle size and composition, throttle level, operating voltage, etc., all play a large role in affecting thruster longevity.
Likewise, these same factors affect how long a thruster can operate in non-stop, continuous use. Anywhere from a few days to several months of continuous usable life are realistic to expect depending on the exact operating conditions.
Thrusters do require routine maintenance, and this also affects how long parts will last. If components are well taken care of, they can last for many years. If they are abused and used in harsh environments, parts may wear down faster and will need to be replaced more frequently. For example, iron particles may be pulled from the water and collect inside the rotor on the magnets. This iron should be cleared out regularly to prevent corrosion and allow for proper operation.
We have recommended thruster maintenance guidelines in our Thruster Usage Guide to help get the most life out of your thrusters. In case anything does eventually need replacing, replacement thruster components are available here.
What is the water flow rate for the T200?
We do not have the tools to measure this empirically, but with some estimates and a little math we can provide a reasonable theoretical value for the flow rate under ideal conditions:
The T200 propeller has a 76.2 mm outer diameter, and a 40 mm diameter central hub. It also has a pitch of 22.5° at 75% of its radius, and spins at about 3075 RPM full throttle 12 V, and 3600 RPM 16 V. Using the pitch and and RPM approximation, this results in a theoretical maximum flow speed of 4.45 m/s at 16 V, and 3.80 m/s at 12 V. The propeller has an area of about 0.00330373 m2. Multiplying these area by the flow speed results in a volume of about 0.014702 m3/s (or 14.7 liters/s or 3.88 gallons/s) at 16 V, and 0.012554 m3/s (or 12.5 liters/s or 3.32 gallons/s) at 12 V.
Bear in mind these speeds and flow rates are rough estimates based on some math and not true measurements, you should expect the real number to be lower. However, they should be reasonably accurate for estimation purposes.