
Ocean Engineering 319 (2025) 120098 

0

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Research paper

Practical identification approach for the actuation dynamics of autonomous
surface vehicles with minimal instrumentation
Thalia Morel a ,∗, Luis Orihuela b,c , Christophe Combastel d , Guillermo Bejarano a

a Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, 2, 41704, Dos Hermanas (Seville), Spain
b Dept. Ingeniería Electrónica, Sistemas Informáticos y Automática, Universidad de Huelva, Avda. de las Fuerzas Armadas, S/N, 21007, Huelva, Spain
c Centro de Investigación en Tecnología, Energía y Sostenibilidad, Universidad de Huelva, Ctra. Huelva-Palos de la Frontera, Campus La Rábida, 21819, Palos de
la Frontera (Huelva), Spain
d Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400, Talence, France

A R T I C L E I N F O

MSC:
93B30
93C10

Keywords:
Autonomous surface vehicles
System identification
Actuation modelling
Inertia
Vessel dynamics

A B S T R A C T

A practical method for identifying the propeller model and inertia matrix of a marine Autonomous Surface
Vehicle (ASV) is proposed in this work. Special attention is paid to limiting the instrumentation requirements.
Based on a generic grey-box dynamic modelling addressing the considered catamaran-shaped ASV architecture,
the static/dynamic behaviour of both propellers and the vessel dynamic are jointly estimated using the sole
measurements of position, heading, and propellers pulse width modulation (PWM) signals. No accelerometer
is required. Two distinct grey-box configurations involving either a static polynomial or a dynamic modelling
of each propeller are proposed and compared. The resulting ASV identification methodology is shown to
provide insight into the whole vessel inertial characteristics, which are key enablers in the development of
autonomous navigation and control systems. Model validation was performed using data collected from the
reported experiments. Model prediction errors related to both linear velocities and yaw rate are evaluated and
compared based on given metrics. The results underscore the robustness and accuracy of the identified models
in capturing the essential dynamics of the ASV, with a determination coefficient that consistently exceeds 0.94
for all estimated velocities.
1. Introduction

Recent advances in ASVs have opened up new and exciting possi-
bilities in various applications, offering a potential reduction in the re-
liance on large manned ships that cause high operational costs (Jovanović
et al., 2024; Gantiva Osorio et al., 2024). These autonomous vehicles
have the ability to revolutionise several fields, including search and
rescue operations, ocean exploration/monitoring, border surveillance,
maritime security among other civilian and military applications. Using
ASVs, these tasks can be performed efficiently, leading to improved
safety, cost savings, and improved environmental stewardship (Morel
et al., 2022a; Gantiva Osorio et al., 2024).

ASVs have gained significant attention for both research and civil
applications since the early 1990s (Simetti and Indiveri, 2022). No-
table prototypes include the catamaran AutoCat for the collection of
hydrographic data (Wu et al., 2022), the autonomous kayak SCOUT
for acoustic navigation and autonomous system tests (Curcio et al.,
2005), and the Measuring Dolphin of the University of Rostock for
water monitoring (Majohr and Buch, 2006). Other examples include
the Charlie catamaran from CNR-ISSIA for sea surface sampling (Caccia

∗ Corresponding author.
E-mail address: tamorel@uloyola.es (T. Morel).

et al., 2007) and the Delfim from IST-ISR for enhancing acoustic com-
munication (Alves et al., 2006).

With a similar purpose of water body monitoring and pollution
tracking, an autonomous catamaran-like surface vessel named Yellow-
fish has been conceived and developed at Universidad Loyola An-
dalucía. This vessel is designed to navigate through calm water and at
low speed, due to its size and the power of its actuation system, while
relying on a minimal instrumentation scheme.

Motion control is crucial to ensure safe navigation and success-
ful path following of the ASV, despite the significant effect of non-
measured disturbances due to wind, waves, and currents in real en-
vironments (Breivik, 2010). Most control design strategies presented
in the literature rely on an open-loop dynamic model of the vessel
behaviour including its actuation system. However, obtaining an accu-
rate model for an ASV based on physical principles can be challenging
due to strong non-linearities, unmodelled hydrodynamics related to
neglected degrees of freedom, environmental disturbances, and inter-
nal parametric uncertainty. However, modelling and identifying such
https://doi.org/10.1016/j.oceaneng.2024.120098
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data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
https://orcid.org/0000-0001-6772-2110
https://orcid.org/0000-0002-1930-1909
https://orcid.org/0000-0003-2805-605X
https://orcid.org/0000-0002-2951-8829
mailto:tamorel@uloyola.es
https://doi.org/10.1016/j.oceaneng.2024.120098
https://doi.org/10.1016/j.oceaneng.2024.120098


T. Morel et al.

v

p
i
i
m
p
h
m

h

a

(
d

A

d

a
n

a
i
a
a

p

m
d
I

l
f

d

c
f
m
m
a
u
t

f
e
r

Ocean Engineering 319 (2025) 120098 
systems remain essential for accurate navigation and control of the
essel (Peng et al., 2020). Conventional approaches often require ex-

tensive instrumentation, including acceleration measurements, which
may increase both the cost and complexity of the system.

Several experimental works in the literature have addressed the
identification of dynamic models for the motion of different kinds of
ASVs. In the literature, the works analysed in the following differ in
their approach, objectives and layout of the vehicles considered, and
they give insight into the current state of the art. This contributes
to highlight the main techniques used, as well as some of their main
restrictions to jointly identify both the ASV dynamics and actuation
system.

Sonnenburg and Woolsey (Eriksen and Breivik, 2017) developed a
lanar motion model for a single-hull ASV, comparing experimentally
dentified models under different speeds and conditions, using a mod-
fied rigid-hull inflatable boat Sonnenburg and Woolsey (2013). Their
ultiple-model approach adjusts based on nominal speed. This paper
roposes a control-oriented modelling procedure for a high-speed rigid-
ull inflatable ASV across various speed regions, without explicitly
odelling the actuation system.

Wu et al. proposed a method to identify linear and non-linear
ydrodynamic coefficients using a Support Vector Machine (SVM) (Wu

et al., 2022) for the modelling of ASV manoeuvres. Linear coefficients
were identified from turning tests at small water-jet angles, while larger
ngles and the linear coefficients were used for non-linear coefficient

identification. The model accurately describes the manoeuvrability of
the ASV. Xu et al.. combined the Least Square Support Vector Machine
LSSVM) with the Cuckoo Search (CS) algorithm to identify a 3-DOF
ynamic model of an ASV (Xu et al., 2020), outperforming other meth-

ods to predict surge and sway velocities, although accurate velocity
measurements are required.

In Abrougui et al. (2021), a 3-DOF control-oriented dynamic model
for an ASV was proposed, with parameters determined through theo-
retical and experimental methods. The control system enables the ASV
to follow a desired trajectory accurately, leading to the conclusion that
lateral sway is negligible in closed-loop control. The emphasis is on
achieving sufficient accuracy for motion control rather than precise
parameter estimation.

Caccia et al. proposed a least-squares identification procedure for
SVs using basic sensors onboard that are typically found in small,

low-cost vessels (Caccia et al., 2008). Validation was performed using
ata from auto-heading and line-following manoeuvres in typical con-

ditions. Linear and quadratic models were applied to the propellers in
the actuation system. The linear drag model performed better at low
angular rates but overestimated yaw rates at high rudder angles, unlike
the quadratic model.

Simetti and Indiveri recently proposed a first-principle manoeuvring
model for a small twin-thruster ASV, addressing non-linearity and
symmetry due to the catamaran layout’s unequal port/starboard dy-
amics (Simetti and Indiveri, 2022). The model adapts hydrodynamic

derivatives for large or tight turns and is identified by correlating
constant thruster revolutions per minute (RPM) with steady-state surge
nd yaw rates from the Global Navigation Satellite System (GNSS) and
nertial data. They propose identifying both the ASV’s dynamic and
ctuation models concurrently, but sway dynamics are not identified,
nd the damping matrix is assumed to be diagonal.

As a summary of the literature review, despite the different ap-
roaches, focus, and ASV layouts, three main facts appear:

• Previous works address either the identification of the dynamic
model of the vessel, or the actuation model, but not the combined
effect on the vehicle motion, at least without strong assumptions
on the model structure or the availability of accurate velocity
measurements.

• Those works that focus on the identification of simplified control-
oriented dynamic models sacrifice, in most cases, the identifica-
tion of individual parameters of the model.
2 
• Concerning the description of the actuation system, both lin-
ear and quadratic static models have been considered. Dynamic
effects are omitted in most cases.

In this work, a practical identification approach is proposed to
obtain a control-oriented dynamic model of an ASV with limited instru-

entation. Reported Yellowfish operations provided the experimental
ata sets (made available) used to validate the proposed methodology.
t focuses on the identification of the so-called input gain term (Peng

et al., 2021), which relates the PWM signals applied to the propellers
to the accelerations generated in the vessel, thus merging the actuation
system with the inertial properties of the vessel. This term turns out
to be key for motion control and state estimation (Abrougui et al.,
2021; Peng et al., 2021). In this context, the main contribution of the
paper consists in proposing an original grey-box modelling approach
involving polynomial and dynamic terms to accurately identify this
so-called input gain, based on a minimal instrumentation scheme. The
comparison and experimental validation of the resulting models are
shown to provide valuable insights not only into the characteristics of
both the propellers and the inertia matrix but also into the whole ASV
dynamic.

The paper is organised as follows. After this introduction, the prob-
em is stated in Section 2. Section 3 describes the experimental plat-
orm, detailing the Yellowfish ASV with the instrumentation used and

the available data. Section 4 details the models considered for both the
vessel dynamics and the actuation system. Then, Section 5 describes the
proposed identification procedure for all actuation models considered.
Section 6 describes the experimental results, presents the obtained
models, and reports the validation results. It also discusses model
selection, considering the uncertainty in identifying model coefficients.
Finally, concluding remarks are given in Section 7.

2. Problem statement

In order to state the ASV grey-box modelling and identification
problem addressed in this work, the kinematics and kinetics of a surface
vessel in horizontal motion are first described using the following
ynamic model (Fossen, 2011):

{

𝜼̇ = 𝑹(𝜓)𝝂

𝑴𝝂̇ = −𝑪(𝝂)𝝂 −𝑫(𝝂)𝝂 − 𝒈(𝜼) + 𝝉𝒘 + 𝝉 ,
(1)

where 𝜼 = [𝑥 𝑦 𝜓]𝑇 is the planar position and heading vector expressed
in the earth-fixed inertial frame {n} (see Fig. 1), 𝝂 = [𝑢 𝑣 𝑟]𝑇 is the lin-
ear and angular velocity vector expressed in the body-fixed frame {b},
𝝉 = [𝐹𝑢 𝐹𝑣 𝜏𝑟]𝑇 refers to the force/torque vector, which represents the
ontrol action, and 𝝉𝑤 =

[

𝐹𝑤,𝑢 𝐹𝑤,𝑣 𝜏𝑤,𝑟
]𝑇 refers to the environmental

orces and torque due to wind, waves, and currents. 𝑴 is the inertia
atrix, 𝑪(𝝂) the Coriolis and centrifugal matrix, 𝑫(𝝂) the damping
atrix, and 𝒈(𝜼) describes the gravitational and buoyancy forces, which

re neglected for a surface vehicle in planar movements. Note that an
nderactuated actuation system is considered, i.e. 𝝉 = [𝐹𝑢 0 𝜏𝑟]𝑇 , since
here is no lateral force in 𝝉.

As first stated in Liu et al. (2019), the lumped generalised distur-
bance vector 𝝈 =

[

𝜎𝑢 𝜎𝑣 𝜎𝑟
]𝑇 ∈ R3 can be defined as:

𝝈 ≡𝑴−1 (−𝑪(𝝂)𝝂 −𝑫(𝝂)𝝂 − 𝒈(𝜼) + 𝝉𝒘
)

. (2)

Vector 𝝈 groups together disturbances due to hydrodynamic ef-
ects, internal unmodelled and coupling dynamics, uncertainties, and
xternal disturbances. Using (2), the body dynamic model (1) can be
edefined as:
{

𝜼̇ = 𝑹(𝝍)𝝂,

𝝂̇ =𝑴−1𝝉 + 𝝈.
(3)

The so-called input gain 𝑮 = [𝐺𝑢 𝐺𝑣 𝐺𝑟]𝑇 ∈ R3 is then defined as:
𝑮 ≡𝑴−1𝝉 , (4)
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Fig. 1. Reference frames of the vessel.

and depends on both the vessel inertial characteristics and the truly
applied propelling force and torque. Though the latter are closely
related to the propellers’ PWM control signals (denoted as 𝛿𝐿 and
𝛿𝑅 for the left and right propeller, respectively), the corresponding
relation 𝑮(𝛿𝐿, 𝛿𝑅) is most often far from trivial. In fact, it may feature
nonlinear and dynamic effects, including possible switching related
to propellers’ forward and reverse modes. Moreover, a simple char-
acterisation from first physical principles (knowledge model) cannot
be easily derived from the sole propeller characteristics since the truly
applied propelling force and torque depend not only on the position of
propellers on the vessel but also on much more complex and possibly
coupled hydrodynamics phenomena. This motivates the development
of an identification methodology primarily focused on the estimation
of 𝑮(𝛿𝐿, 𝛿𝑅) from experimental data.

More precisely, the aim of this work is,

• firstly, to define and compare relevant grey-box models (non-
linear, dynamic) for the so-called input gain 𝑮 = 𝑮(𝛿𝐿, 𝛿𝑅) in (4),

• then estimate all related parameters and,
• finally, validate the resulting whole ASV dynamic model based on

explicitly given metrics.

Another requirement of the identification methodology is to rely on a
minimal instrumentation scheme reduced to the linear position mea-
surements given by the GNSS system, the heading measured by the
Attitude and Heading Reference Systems (AHRS), and the propellers’
PWM control signals. Such signals are easily made available for a wide
class of ASVs, including the catamaran-shaped YellowFish described in
Section 3 and serving as an illustrative application case in this paper.

3. Experimental platform, instrumentation and available data

The Yellowfish ASV, depicted in Fig. 2, is a catamaran vessel made
of fibreglass, measuring 128 cm long and 98 cm wide. The catamaran
design features two identical hulls, firmly connected by aluminium
bars. The propulsion of the Yellowfish ASV is provided by two T200
thrusters manufactured by BlueRobotics, which are electric propeller
motors.

Regarding hardware, the ASV features a Raspberry Pi 4 model
B integrated with a Navio2 for command and data processing. The
Raspberry Pi 4, a mini-computer, operates with an integrated sys-
tem specifically tailored to align with the characteristics of Navio2.
Its primary role within the system is to facilitate telemetry support.
The experimental platform, equipped with the necessary sensors and
hardware for data acquisition, is shown in Fig. 2.
3 
Furthermore, the software implemented on the Navio2 is called
Ardupilot. Essentially, Navio2 uses Ardupilot for comprehensive sensor
configuration and vehicle control across all installed vehicles. Mission
Planner serves as the ground station software utilised for telecommu-
nication purposes with the ship. The DataFlash logs can be obtained
through Mavlink from the Mission Planner and create a MATLAB file
with all sensor values. For additional details on the Yellowfish ASV’s
hardware and software, the reader is referred to Morel et al. (2022b,
2023).

The Yellowfish ASV mounts different sensors whose available data
and their respective sampling times are presented in Table 1. As seen
in the table, the sensors have different sampling times: The AHRS at
20 ms and the GNSS at 200 ms. In addition to these outputs, the PWM
signals generated with the radio controller (RCOU) can be measured
with a sampling time of 100 ms.

Based on the data provided by the mentioned sensors, some trans-
formations are necessary to obtain the variables used in the vessel
model. First, each propeller (left and right) takes a PWM signal as
input. The PWM values of the left and right thrusters are normalised
between [−1, 1]. This signal, after normalisation, can be described by 𝛿𝑖
∈ [−1, 1], 𝑖 ∈ {𝐿, 𝑅}, being 𝛿𝑖 = ±1 a PWM signal with a duty cycle of
100%, and 𝛿𝑖 = 0 a PWM signal with a duty cycle of 0%. More details
on the normalisation of the PWM signals can be found in Morel et al.
(2022b). The propellers produce forward motion forces for positive val-
ues of 𝛿𝑖. Other metrics, such as planar positioning coordinates {𝑥, 𝑦},
are obtained by transforming point locations provided by the GNSS
from geographic coordinates to local Cartesian coordinates, returned
as north-east-down (NED). After this transformation, a location shift is
performed, as the GNSS antenna is not positioned at the same place
as the Navio2, from which other data are derived. The heading 𝜓 is
measured directly by the AHRS.

4. Modelling

This section aims to find the expression for the input gain as a grey-
box model, requiring the complete modelling of the vehicle. The overall
vehicle model is represented by the block diagram in Fig. 3, where the
system is divided into two primary components: the actuation system
and the ASV body. The actuation system takes the PWM signals for
the left and right propellers, denoted as 𝛿𝐿 and 𝛿𝑅, as inputs. It then
produces the force 𝐹𝑢 and the torque 𝜏𝑟 applied to the vessel body as
outputs, using thrusts 𝑇𝐿 and 𝑇𝑅 as intermediate variables within the
actuation system. The ASV body takes the force 𝐹𝑢 and torque 𝜏𝑟 as
inputs and produces, as outputs, the full state of the vessel, consisting of
its 3-DOF position 𝜼 and velocity 𝝂 vectors. In the following subsections,
further details are given for the models of each block.

4.1. ASV body

Based on the kinetic equation presented in (3), considering manoeu-
vring theory (almost constant positive forward speed and relatively
calm water) and assuming homogeneous mass distribution and 𝑋𝑏−𝑍𝑏-
plane symmetry, being 𝑋𝑏 and 𝑍𝑏 the aft-to-fore and top-to-bottom
axes, respectively (see Fossen (2011)), the structure of 𝑴 is shown
in (5):

𝑴 =
⎡

⎢

⎢

⎣

𝑚 −𝑋𝑢̇ 0 0
0 𝑚 − 𝑌𝑣̇ 𝑚𝑥𝑔 − 𝑌𝑟̇
0 𝑚𝑥𝑔 − 𝑌𝑟̇ 𝐼𝑧 −𝑁𝑟̇

⎤

⎥

⎥

⎦

, (5)

where 𝑚 is the ASV total mass, 𝑥𝑔 is the distance from the centre of
gravity of the vessel to the origin of {b} (measured along 𝑋𝑏), 𝐼𝑧 is
the moment of inertia about the 𝑍𝑏 axis, and 𝑋(⋅), 𝑌(⋅), and 𝑁(⋅) are
hydrodynamic parameters according to standard notation (The Society
of Naval Architecture and Marine Engineers, 1950). Notice that 𝑴 =
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Fig. 2. The Yellowfish ASV experimental platform.
Table 1
Summary of sensor data and variables for vessel model analysis.

Sensor Available data Sampling rate Obtained variable Unit Description of variable

GNSS Latitude, longitude 200 ms 𝑥, 𝑦 m North and east absolute position
RCOU PWM𝐿, PWM𝑅 100 ms 𝛿𝐿 , 𝛿𝑅 μs Propellers normalised duty cycle
AHRS Heading 20 ms 𝜓 rad Heading angle
Fig. 3. Block diagram of the ASV, highlighting the actuation system and the ASV body.
𝑴𝑇 , and the structure of 𝑴 ensures that 𝑴−1 exists for well-designed
vessels (Fossen, 2011).

According to Fossen (2011), Coriolis 𝑪(𝝂) and damping 𝑫(𝝂) matri-
ces are given by:

𝑪(𝝂) =
⎡

⎢

⎢

⎢

⎣

0 0 −(𝑚 − 𝑌𝑣̇)𝑣 − (𝑚𝑥𝑔 − 𝑌𝑟̇)𝑟
0 0 (𝑚 −𝑋𝑢̇)𝑢

(𝑚 − 𝑌𝑣̇)𝑣 + (𝑚𝑥𝑔 − 𝑌𝑟̇)𝑟 −(𝑚 −𝑋𝑢̇)𝑢 0

⎤

⎥

⎥

⎥

⎦

, (6)

𝑫(𝝂) =
⎡

⎢

⎢

⎢

⎣

−𝑋𝑢 −𝑋|𝑢|𝑢|𝑢| 0 0
0 −𝑌𝑣 − 𝑌|𝑣|𝑣|𝑣| − 𝑌|𝑟|𝑣|𝑟| −𝑌𝑟 − 𝑌|𝑣|𝑟|𝑣| − 𝑌|𝑟|𝑟|𝑟|
0 −𝑁𝑣 −𝑁|𝑣|𝑣|𝑣| −𝑁|𝑟|𝑣|𝑟| −𝑁𝑟 −𝑁|𝑣|𝑟|𝑣| −𝑁|𝑟|𝑟|𝑟|

⎤

⎥

⎥

⎥

⎦

.

(7)

Note that the damping matrix considers non-linear terms, which are
neglected in most identification papers but which will be kept in this
work.

The rotation matrix 𝑹(𝜓) between {b} and {n} is given by:

𝑹(𝜓) =
⎡

⎢

⎢

⎣

cos(𝜓) −sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

⎤

⎥

⎥

⎦

=
[

𝑹2(𝜓) 𝟎
𝟎 1

]

, (8)

where 𝑹2(𝜓) ∈ R2×2 is the upper left submatrix of 𝑹(𝜓).
In this study, the identification process relies on a discretised ver-

sion of the kinetics equation, chosen for the incorporation of unknown
disturbances. The discrete-time kinetics equation is then derived, with
ℎ denoting the sampling period, as follows:

𝝂(𝑘 + 1) = 𝝂(𝑘) + ℎ𝑴−1𝝉(𝑘) + ℎ𝝈(𝑘). (9)
4 
More precisely, the discretised system dynamics presented in (9)
can be divided into three equations, corresponding to every velocity
component, as shown:
𝑢(𝑘 + 1) = 𝑢(𝑘) + ℎ𝑴−1(1, 1)𝐹𝑢(𝑘) + ℎ𝜎𝑢(𝑘),
𝑣(𝑘 + 1) = 𝑣(𝑘) + ℎ𝑴−1(2, 3)𝜏𝑟(𝑘) + ℎ𝜎𝑣(𝑘),
𝑟(𝑘 + 1) = 𝑟(𝑘) + ℎ𝑴−1(3, 3)𝜏𝑟(𝑘) + ℎ𝜎𝑟(𝑘),

(10)

where 𝑴−1(𝑖, 𝑗) stands for the (𝑖, 𝑗) element of the inverse of the
inertia matrix. Then, it is evident that the input gains can be mathe-
matically defined as:
𝐺𝑢(𝑘) ∶= ℎ𝑴−1(1, 1)𝐹𝑢(𝑘),

𝐺𝑣(𝑘) ∶= ℎ𝑴−1(2, 3)𝜏𝑟(𝑘),

𝐺𝑟(𝑘) ∶= ℎ𝑴−1(3, 3)𝜏𝑟(𝑘).

(11)

From (2), it can be assumed that each of the components of 𝝈
can be approximated as a quasi-quadratic function of 𝝂 plus some
disturbances:

𝜎𝑗 = 𝝂𝑇𝑷 𝒋|𝝂| + 𝝂𝑇𝑸𝒋𝝂 +𝑹𝒋𝝂 + 𝑐𝑗 , (12)

where 𝑗 ∈ {𝑢, 𝑣, 𝑟}, 𝑷 𝑗 ∈ R3×3, 𝑹𝑗 ∈ R1×3, and 𝑸𝑗 ∈ R3×3 are constant
matrices assumed to be symmetric, and 𝑐𝑗 ∈ R is a possible time-
varying vector accounting for the effect of wind, waves, and currents.
In particular:

𝑷 𝑢 =

⎡

⎢

⎢

⎢

⎣

𝑃 (1,1)
𝑢 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

, 𝑸𝑢 =

⎡

⎢

⎢

⎢

⎣

0 0 0
0 0 𝑄(2,3)

𝑢
0 𝑄(2,3)

𝑢 𝑄(3,3)
𝑢

⎤

⎥

⎥

⎥

⎦

, 𝑹𝑢 =
[

𝑅(1)
𝑢 0 0

]

𝑷 𝑣 =
⎡

⎢

⎢

⎣

0 0 0
0 𝑃 (2,2)

𝑣 𝑃 (2,3)
𝑣

0 𝑃 (3,2) 𝑃 (3,3)

⎤

⎥

⎥

⎦

, 𝑸𝑣 =

⎡

⎢

⎢

⎢

0 𝑄(1,2)
𝑣 𝑄(1,3)

𝑣
𝑄(1,2)
𝑣 0 0
(1,3)

⎤

⎥

⎥

⎥

,

𝑣 𝑣
⎣

𝑄𝑣 0 0
⎦
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𝑹𝑣 =
[

0 𝑅(2)
𝑣 𝑅(3)

𝑣

]

𝑷 𝑟 =
⎡

⎢

⎢

⎣

0 0 0
0 𝑃 (2,2)

𝑟 𝑃 (2,3)
𝑟

0 𝑃 (3,2)
𝑟 𝑃 (3,3)

𝑟

⎤

⎥

⎥

⎦

, 𝑸𝑟 =

⎡

⎢

⎢

⎢

⎣

0 𝑄(1,2)
𝑟 𝑄(1,3)

𝑟
𝑄(1,2)
𝑟 0 0

𝑄(1,3)
𝑟 0 0

⎤

⎥

⎥

⎥

⎦

,

𝑹𝑟 =
[

0 𝑅(2)
𝑟 𝑅(3)

𝑟

]

4.2. Actuation system

The physical actuation system comprises two parts. First, the pro-
ellers that receive individual normalised PWM signals 𝛿𝐿, 𝛿𝑅 and

generate thrusts 𝑇𝐿(𝛿𝐿), 𝑇𝑅(𝛿𝑅). This first part has received a lot of
attention in the literature, as propellers have complex nonlinear dy-
namics and are difficult to model and identify (Simetti and Indiveri,
2022; Blanke et al., 2000; Mu et al., 1889; Zuev et al., 2020; Simmons,
2021). In the current configuration, it is reasonable to assume that both
propellers are identical. Thus, a unique function 𝑇 (𝛿𝑖), 𝑖 ∈ {𝐿, 𝑅}, is
considered valid for both propellers.

The second part is the particular configuration of the vessel that
allows a static transformation from the thrusts of each propeller to the
force and torque received by the body. For the Yellowfish ASV, the force
𝐹𝑢 and torque 𝜏𝑟, expressed in the body-fixed frame {b}, can be found
as:

𝐹𝑢 = 𝑇 (𝛿𝐿) + 𝑇 (𝛿𝑅), 𝜏𝑟 =
𝑑
2
(

𝑇 (𝛿𝐿) − 𝑇 (𝛿𝑅)
)

, (13)

where 𝑑 is the distance between propellers, and 𝑇 (𝛿𝑖), with 𝑖 ∈ {𝐿, 𝑅},
represents the thrust dynamic model for any of the identical propellers.

Attending to the previous discussion, and to previous modelling in
the literature, in this manuscript we have considered different models:

• Function 𝑇 (𝛿𝑖) is a static quadratic function of the PWM signal
applied to the propeller. Considering the thrust quadratic with
the RPM is common in the literature (see, for instance, Simetti
and Indiveri (2022)). Since the RPM is not a manipulable input,
we seek a model that takes the PWM signal as input, assuming
that this quadratic relation is preserved.

• Function 𝑇 (𝛿𝑖) can be approximated by a first-order dynamic
system. Again, this sort of model has been used in the literature
(see, for example, Blanke et al. (2000)).

The next subsections present the aforementioned models. To sim-
plify the notation, and assuming that both propellers are identical and
hus share the same model, the subscripts 𝑖 ∈ {𝐿, 𝑅} will be removed.

4.2.1. Second-order static model
The thrust 𝑇 (𝛿(𝑘)) is assumed to be described as:

𝑇 (𝛿(𝑘)) =
{

𝑎𝑓 𝛿(𝑘)2 + 𝑏𝑓 𝛿(𝑘), 𝛿(𝑘) ≥ 0+

𝑎𝑟𝛿(𝑘)2 + 𝑏𝑟𝛿(𝑘), 𝛿(𝑘) < 0−,
(14)

where 𝛿(𝑘) ∈ [−1, 1] is the normalised PWM signal, and 𝑎𝑗 , 𝑏𝑗 ∈ R
with 𝑗 ∈ {𝑓 , 𝑟} are unknown scalars, where subindices 𝑓 and 𝑟 stand
or forward and reverse motion, respectively. Eq. (14) establishes four

regions of operations attending to the rotation of the left and right
propellers. The (𝑓 , 𝑓 ) region will occur when the ASV moves forward
in a straight line or with low-curvature trajectories. High-curvature
trajectories are defined by the (𝑓 , 𝑟) and (𝑟, 𝑓 ) regions. Finally, the
reverse motion will be attained with the (𝑟, 𝑟) region.

As the primary objective of this identification process refers to the
motion control of the Yellowfish ASV, the latter configuration will not
be employed during the identification experiments, as it does not align

ith the intended use-case scenario.

Remark 1. The T200 Thrusters present a non-symmetric dead zone
around 𝛿 = 0, which has been experimentally identified in Morel et al.
(2022b). To account for it, (14) could be easily modified as:
5 
𝑇 (𝛿(𝑘)) =
⎧

⎪

⎨

⎪

⎩

𝑎𝑓
(

𝛿(𝑘) − 𝛿𝑓
)2 + 𝑏𝑓

(

𝛿(𝑘) − 𝛿𝑓
)

, 𝛿(𝑘) ≥ 𝛿𝑓
𝑎𝑟

(

𝛿(𝑘) − 𝛿𝑟
)2 + 𝑏𝑟

(

𝛿(𝑘) − 𝛿𝑟
)

, 𝛿(𝑘) ≤ 𝛿𝑟,
0, otherwise

where 𝛿𝑓 > 0 and 𝛿𝑟 < 0 are the identified dead zone limits. The
identification methods presented in the rest of this paper can be applied
considering the previous model for the thrusters, or the one in (14).

owever, as the identified constants are very small, and trying to
eep the notation as simple as possible to keep the focus on the

identification, the rest of the document does not consider the dead zone.

4.2.2. First-order dynamic model
Both thrusts are assumed to be described by a first-order model, this

is:

𝑇 (𝑘) = 𝛼 𝑇 (𝑘 − 1) + 𝛽 𝑇𝑠𝑡(𝑘 − 1) (15)

where 𝛼 , 𝛽 ∈ R are constants to identify, and:

𝑇𝑠𝑡(𝛿(𝑘)) =
{

𝑎𝑓 𝛿(𝑘)2 + 𝑏𝑓 𝛿(𝑘), 𝛿(𝑘) ≥ 0+

𝑎𝑟𝛿(𝑘)2 + 𝑏𝑟𝛿(𝑘), 𝛿(𝑘) ≤ 0−,
(16)

represents the static input thrust as a quadratic function of the PWM
normalised signal.

5. Identification procedure

For the vehicle identification process, a specific procedure is fol-
owed as described in this section. First, the available data are prepared
o meet the necessary requirements established in the previous section.
ubsequently, the input gain for static propeller modelling is obtained.
inally, the equations are derived to identify the input gain, taking into
ccount a dynamic model. This section provides a detailed explanation
f the identification process for both propeller modelling.

According to Section 2, the problem to be addressed in the iden-
tification procedure is to find the input gains 𝐺𝑢, 𝐺𝑣, and 𝐺𝑟, whose
mathematical expressions are defined in (11), using the available ex-
perimental information.

5.1. Data preparation

The procedure to transform raw experimental data into the values
necessary for identification is detailed. Initially, as data are collected at
varying sampling times, the longest duration, in this case the GNSS data
with a sampling time of 200 ms, is used as a reference for the remainder.
The input data are adjusted to use only previous points, with a cubic
pline extrapolation applied to the latitude and longitude data from the
NSS. For the heading, which has a 20 ms sampling time, an 8th-degree

pline extrapolation is employed. For PWM data, a third-order spline
xtrapolation is also used. Please note that this synchronisation with
pline extrapolations has been done carefully to keep causality, which
an be lost with interpolation methods.

The values required for identification include the linear velocities
{𝑢, 𝑣} and the yaw rate 𝑟, as well as the values of 𝛿𝐿 and 𝛿𝑅. However,
instead of using individual PWM signals 𝛿𝐿 and 𝛿𝑅 as inputs, this
manuscript proposes to use the PWM mean or 𝛿 ≡ 𝛿𝐿+𝛿𝑅

2 and the PWM
difference or 𝛥𝛿 ≡ 𝛿𝐿 − 𝛿𝑅. The reason is of a practical nature. In order
to gather the necessary experimental data for the identification of the

SV, a series of experiments were conducted using a radio controller to
issue commands to the propellers. Within this remote control system,
two joysticks are configured to manipulate both the PWM mean and the
PWM difference. It is not possible, with the radio controller, to choose
the PWM values of each thruster independently. Furthermore, the PWM
mean and difference signals are adequate to excite different kinds of
dynamics, as will be explained later.
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Table 2
Required data for vessel identification and their sources.

Data for identification Required data Description

𝑢, 𝑣 𝑥, 𝑦, 𝜓 These derivatives obtain body-referenced velocities,
requiring heading.

𝛿, 𝛥𝛿 𝛿𝐿, 𝛿𝑅 The left and right thruster values are transformed
to obtain their mean and difference.

𝑟 𝜓 The yaw rate is obtained by the derivative of 𝜓 .
f

t
t
c
i
h

e
t

The process of obtaining the linear velocities {𝑢, 𝑣} is based on
the measured positions and heading. This transformation also in-
volves changing the reference frame from inertial coordinates to body-
referenced coordinates. Detailed equations for this transformation are
provided in Morel et al. (2022b). Finally, these values are also filtered
sing a Savitzky–Golay filter. The yaw rate 𝑟 is obtained by the
erivative of 𝜓 and then filtered using a Savitzky–Golay filter (Savitzky

and Golay, 1964). Table 2 details the measured data from which these
ecessary values are derived.

5.2. Input-gain identification for static propeller modelling

The left and right thrusts, 𝑇 (𝛿(𝑘)), are assumed to be described as
in (14). According to (13), now using the PWM mean 𝛿 and difference
𝛿 values, the force 𝐹𝑢 and the torque 𝜏𝑟 can be written as follows:

𝐹𝑢(𝛿(𝑘), 𝛥𝛿(𝑘)) = (𝑎𝐿𝑗 + 𝑎𝑅𝑗 )
(

𝛿(𝑘)2 +
𝛥𝛿(𝑘)2

4

)

+ (𝑎𝐿𝑗 − 𝑎𝑅𝑗 )𝛿(𝑘)𝛥𝛿(𝑘)

+ (𝑏𝐿𝑗 + 𝑏𝑅𝑗 )𝛿(𝑘) + (𝑏𝐿𝑗 − 𝑏𝑅𝑗 )
𝛥𝛿(𝑘)
2

, (17)

𝜏𝑟(𝛿(𝑘), 𝛥𝛿(𝑘)) = 𝑑
2

(

(𝑎𝐿𝑗 − 𝑎𝑅𝑗 )
(

𝛿(𝑘)2 +
𝛥𝛿(𝑘)2

4

)

+ (𝑎𝐿𝑗 + 𝑎𝑅𝑗 )𝛿(𝑘)𝛥𝛿(𝑘)

+ (𝑏𝐿𝑗 − 𝑏𝑅𝑗 )𝛿(𝑘) + (𝑏𝐿𝑗 + 𝑏𝑅𝑗 )
𝛥𝛿(𝑘)
2

)

, (18)

where 𝑎𝑖𝑗 , 𝑏𝑖𝑗 with 𝑖 ∈ {𝐿, 𝑅}, 𝑗 ∈ {𝑓 , 𝑟} are the forward and reverse
models to be identified for the propellers.

Now, for a better excitation of the surge dynamics, only those
instants in the dataset in which the propellers work in the region
(𝑓 , 𝑓 ) will be considered for identification. In addition, the external
disturbances are considered constant for identification, this is, 𝑐𝑢(𝑘) =
̄𝑢, ∀𝑘.

Proposition 1. Provided that 𝛿(𝑘) and 𝛥𝛿(𝑘) are known for every 𝑘,
and the velocities 𝑢(𝑘), 𝑣(𝑘), 𝑟(𝑘) can be obtained from the position data
as explained in Section 5.1, the evolution of the surge at instant 𝑘 for a
uadratic static model for the propeller and operating in the region (𝑓 , 𝑓 )
atisfies:

𝐴𝑢(𝑘)𝑋𝑢 = 𝑏𝑢(𝑘), (19)

where 𝑋𝑢 represents a vector of unknown coefficients to identify:

𝑋𝑢 = ℎ[𝑃 (1,1)
𝑢 2𝑄(2,3)

𝑢 𝑄(3,3)
𝑢 𝑅(1)

𝑢 𝑐𝑢 2𝑴−1(1, 1)𝑎𝑓 2𝑴−1(1, 1)𝑏𝑓 ]𝑇 , (20)

and 𝐴𝑢(𝑘), 𝑏𝑢(𝑘) are a vector and a scalar, respectively, that can be com-
puted from the dataset:

𝐴𝑢(𝑘) =
[

𝑢(𝑘)|𝑢(𝑘)| 𝑣(𝑘)𝑟(𝑘) 𝑟(𝑘)2 𝑢(𝑘) 1
(

𝛿(𝑘)2 +
𝛥𝛿(𝑘)2

4

)

𝛿(𝑘)
]

,

(21)

𝑏𝑢(𝑘) = 𝑢(𝑘 + 1) − 𝑢(𝑘). (22)

Proof. While in the region (𝑓 , 𝑓 ), the force in (17) can be simplified
s:

𝐹𝑢(𝛿(𝑘), 𝛥𝛿(𝑘)) = 2𝑎𝑓
(

𝛿(𝑘)2 +
𝛥𝛿(𝑘)2

4

)

+ 2𝑏𝑓 𝛿(𝑘).
6 
Subsequently, the dynamics of the surge for a quadratic static model
or the propeller results in:

𝑢(𝑘 + 1) = 𝑢(𝑘) + 2ℎ𝑴−1(1, 1)𝑎𝑓

(

𝛿(𝑘)2 +
𝛥𝛿(𝑘)2

4

)

+ 2ℎ𝑴−1(1, 1)𝑏𝑓 𝛿(𝑘) + ℎ𝑃 (1,1)
𝑢 𝑢(𝑘)|𝑢(𝑘)|

+ 2ℎ𝑄(2,3)
𝑢 𝑣(𝑘)𝑟(𝑘) + ℎ𝑄(3,3)

𝑢 𝑟(𝑘)2 + ℎ𝑅(1)
𝑢 𝑢(𝑘) + ℎ𝑐𝑢(𝑘).

Since the mean and difference PWM normalised signals are known,
and the velocities can be obtained from the dataset, the previous equa-
tion reveals that the unknown coefficients appear in a linear fashion,
as in (19). □

Remark 2. The experiments were carried out on an artificial lake that
had minimal influence from currents and waves. Concerning the wind,
the experiments took place on relatively calm days. However, it is not
possible to completely neglect the effect of the wind on lumped distur-
bances. To partially compensate for that, the identification procedure
tries to capture a constant disturbance term 𝑐𝑢 with the intention of
modelling a bias or persistent force in some direction.

Vector 𝑋𝑢 can be approximated, for instance, via least-squares. As a
result, the surge input gain 𝐺𝑢(𝑘) in (11) can be computed as a function
of the mean and difference PWM normalised values:

𝐺𝑢(𝑘) = 𝑋𝑢(6)
(

𝛿(𝑘)2 +
𝛥𝛿(𝑘)2

4

)

+𝑋𝑢(7)𝛿(𝑘). (23)

Concerning the yaw and sway dynamics, now the data belonging
o regions (𝑓 , 𝑓 ), (𝑓 , 𝑟), (𝑟, 𝑓 ) will be used for identification. Despite
he fact that sway and, particularly, yaw dynamics are better ex-
ited in regions (𝑓 , 𝑟), (𝑟, 𝑓 ) than in region (𝑓 , 𝑓 ), the Yellowfish ASV
s mainly designed to conduct path-following missions and, therefore,
igh-curvature trajectories will not be predominant.

Proposition 2. Provided that 𝛿(𝑘) and 𝛥𝛿(𝑘) are known for every 𝑘,
and the velocities 𝑢(𝑘), 𝑣(𝑘), 𝑟(𝑘) can be obtained from the position data, the
volution of the sway and yaw at instant 𝑘 for a quadratic static model for
he propeller satisfy:

𝐴𝑣(𝑘)𝑋𝑣 = 𝑏𝑣(𝑘), (24)

𝐴𝑟(𝑘)𝑋𝑟 = 𝑏𝑟(𝑘), (25)

where 𝑋𝑣 and 𝑋𝑟 are the vectors of unknown coefficients to identify:

𝑋𝑣 = ℎ
[

𝑃 (2,2)
𝑣 𝑃 (2,3)

𝑣 𝑃 (3,2)
𝑣 𝑃 (3,3)

𝑣 2𝑄(1,2)
𝑣 2𝑄(1,3)

𝑣 𝑅(2)
𝑣 𝑅(3)

𝑣 𝑐𝑣

𝑴−1(2, 3)𝑑
2
(𝑎𝐿𝑗 − 𝑎𝑅𝑗 ) 𝑴

−1(2, 3)𝑑
2
(𝑎𝐿𝑗 + 𝑎𝑅𝑗 )

𝑴−1(2, 3)𝑑
2
(𝑏𝐿𝑗 − 𝑏𝑅𝑗 ) 𝑴

−1(2, 3)𝑑
2
(𝑏𝐿𝑗 + 𝑏𝑅𝑗 )

]

𝑇 , (26)

𝑋𝑟 = ℎ
[

𝑃 (2,2)
𝑟 𝑃 (2,3)

𝑟 𝑃 (3,2)
𝑟 𝑃 (3,3)

𝑟 2𝑄(1,2)
𝑟 2𝑄(1,3)

𝑟 𝑅(2)
𝑟 𝑅(3)

𝑟 𝑐𝑟

𝑴−1(3, 3)𝑑
2
(𝑎𝐿𝑗 − 𝑎𝑅𝑗 ) 𝑴

−1(3, 3)𝑑
2
(𝑎𝐿𝑗 + 𝑎𝑅𝑗 )

𝑴−1(3, 3)𝑑
2
(𝑏𝐿𝑗 − 𝑏𝑅𝑗 ) 𝑴

−1(3, 3)𝑑
2
(𝑏𝐿𝑗 + 𝑏𝑅𝑗 )

] 𝑇 , (27)

and 𝐴𝑣(𝑘), 𝐴𝑟(𝑘), 𝑏𝑣(𝑘), 𝑏𝑟(𝑘) are two pairs of vectors and scalars, respec-
tively, that can be computed from the dataset.

Proof. To follow the step-by-step process of Proposition 2, the reader
is referred to Morel et al. (2024). □
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As before, vectors 𝑋𝑣, 𝑋𝑟 can be approximated, for instance, via
east-squares. Then, sway and yaw input gains can be computed from
he mean and difference PWM normalised values:

𝐺𝑝(𝑘) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑋𝑝(11)𝛿(𝑘)𝛥𝛿(𝑘) +𝑋𝑝(13)
𝛥𝛿(𝑘)
2 , (𝑓 , 𝑓 )

𝑋𝑝(10)
(

𝛿(𝑘)2 + 𝛥𝛿(𝑘)2
4

)

+𝑋𝑝(11)𝛿(𝑘)𝛥𝛿(𝑘)

+𝑋𝑝(12)𝛿(𝑘) +𝑋𝑝(13)
𝛥𝛿(𝑘)
2

, (𝑓 , 𝑟)

−𝑋𝑝(10)
(

𝛿(𝑘)2 + 𝛥𝛿(𝑘)2
4

)

+𝑋𝑝(11)𝛿(𝑘)𝛥𝛿(𝑘)

−𝑋𝑝(12)𝛿(𝑘) +𝑋𝑝(13)
𝛥𝛿(𝑘)
2

, (𝑟, 𝑓 )

(28)

where 𝑝 ∈ {𝑣, 𝑟}.

Remark 3. Please note that, even though it is not the objective of
the method, the previous procedure allows for a reconstruction of the
lumped disturbances as a function of the velocities. This could be
interesting when designing a feedforward controller that could partially
compensate for the effect of such disturbances.

5.3. Input-gain identification for dynamic propeller modelling

In the process of identifying the input gain considering the dy-
namic propeller modelling, (15) is used for the first-order dynamic
model. Following this, the procedure to obtain the regressors bears a
esemblance to the approach used to identify the input gain for static

propeller modelling and, hence, some developments will be simplified.
The following aims to highlight the specific adaptations necessary for
dynamic analysis.

Proposition 3. Provided that 𝛿(𝑘) and 𝛥𝛿(𝑘) are known for every 𝑘,
and the velocities 𝑢(𝑘), 𝑣(𝑘), 𝑟(𝑘) can be obtained from the position data, the
evolution of the velocities at instant 𝑘 for a quadratic dynamic model for
the propeller satisfies:

𝐴𝑑 𝑦𝑛,𝑢(𝑘)𝑋𝑑 𝑦𝑛,𝑢 = 𝑏𝑑 𝑦𝑛,𝑢(𝑘), (29)

𝐴𝑑 𝑦𝑛,𝑣(𝑘)𝑋𝑑 𝑦𝑛,𝑣 = 𝑏𝑑 𝑦𝑛,𝑣(𝑘), (30)

𝐴𝑑 𝑦𝑛,𝑟(𝑘)𝑋𝑑 𝑦𝑛,𝑟 = 𝑏𝑑 𝑦𝑛,𝑟(𝑘), (31)

where 𝑋𝑑 𝑦𝑛,𝑢, 𝑋𝑑 𝑦𝑛,𝑣 and 𝑋𝑑 𝑦𝑛,𝑟 are the vectors of unknown coefficients to
identify:

𝑋𝑑 𝑦𝑛,𝑢 =
[

(

𝛼 + ℎ𝑅(1)
𝑢
)

− 𝛼 ℎ𝑃 (1,1)
𝑢 − 𝛼 ℎ𝑄(2,3)

𝑢 − 𝛼 ℎ𝑄(3,3)
𝑢

− 𝛼
(

1 + ℎ𝑅(1)
𝑢
)

ℎ𝑃 (1,1)
𝑢 ℎ𝑄(2,3)

𝑢 ℎ𝑄(3,3)
𝑢

(ℎ − 𝛼)𝑐𝑢 2ℎ𝛽𝑴−1(1, 1)𝑎𝑓 2ℎ𝛽𝑴−1(1, 1)𝑏𝑓

]

𝑇 , (32)

𝑋𝑑 𝑦𝑛,𝑣 =
[

(

𝛼 + ℎ𝑅(2)
𝑣

)

− 𝛼 ℎ𝑃 (2,2)
𝑣 − 𝛼 ℎ𝑃 (2,3)

𝑣 − 𝛼 ℎ𝑃 (3,2)
𝑣 − 𝛼 ℎ𝑃 (3,3)

𝑣

− 2𝛼 ℎ𝑄(1,2)
𝑣 − 2𝛼 ℎ𝑄(1,3)

𝑣 − 𝛼
(

1 + ℎ𝑅(2)
𝑣

)

− 𝛼 ℎ𝑅(3)
𝑣 ℎ𝑃 (2,2)

𝑣

ℎ𝑃 (2,3)
𝑣 ℎ𝑃 (3,2)

𝑣 ℎ𝑃 (3,3)
𝑣 2ℎ𝑄(1,2)

𝑣 2ℎ𝑄(2,2)
𝑣 ℎ𝑅(2)

𝑣 ℎ𝑅(3)
𝑣 (ℎ − 𝑑

2
𝛼)𝑐𝑣

𝑑
2
ℎ𝛽𝑴−1(2, 3)(𝑎𝐿𝑗 − 𝑎𝑅𝑗 )

𝑑
2
ℎ𝛽𝑴−1(2, 3)(𝑎𝐿𝑗 + 𝑎𝑅𝑗 )

𝑑
2
ℎ𝛽𝑴−1(2, 3)(𝑏𝐿𝑗 − 𝑏𝑅𝑗 )

𝑑
2
ℎ𝛽𝑴−1(2, 3)(𝑏𝐿𝑗 + 𝑏𝑅𝑗 )

]

𝑇 , (33)

𝑋𝑑 𝑦𝑛,𝑟 =
[

(

𝛼 + ℎ𝑅(3)
𝑟

)

− 𝛼 ℎ𝑃 (2,2)
𝑟 − 𝛼 ℎ𝑃 (2,3)

𝑟 − 𝛼 ℎ𝑃 (3,2)
𝑟 − 𝛼 ℎ𝑃 (3,3)

𝑟

− 2𝛼 ℎ𝑄(1,2)
𝑟 − 2𝛼 ℎ𝑄(1,3)

𝑟 − 𝛼 ℎ𝑅(2)
𝑟 − 𝛼

(

1 + ℎ𝑅(3)
𝑟

)

ℎ𝑃 (2,2)
𝑟

ℎ𝑃 (2,3) ℎ𝑃 (3,2) ℎ𝑃 (3,3) 2ℎ𝑄(1,2) 2ℎ𝑄(2,2) ℎ𝑅(2) ℎ𝑅(3) (ℎ − 𝑑 𝛼)𝑐
𝑟 𝑟 𝑟 𝑟 𝑟 𝑟 𝑟 2 𝑟
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𝑑
2
ℎ𝛽𝑴−1(3, 3)(𝑎𝐿𝑗 − 𝑎𝑅𝑗 )

𝑑
2
ℎ𝛽𝑴−1(3, 3)(𝑎𝐿𝑗 + 𝑎𝑅𝑗 )

𝑑
2
ℎ𝛽𝑴−1(3, 3)(𝑏𝐿𝑗 − 𝑏𝑅𝑗 )

𝑑
2
ℎ𝛽𝑴−1(3, 3)(𝑏𝐿𝑗 + 𝑏𝑅𝑗 )

]

𝑇 . (34)

Proof. For a detailed breakdown of Proposition 3, including the
values of 𝐴𝑑 𝑦𝑛,𝑗 (𝑘) and 𝑏𝑑 𝑦𝑛,𝑗 (𝑘) with 𝑗 ∈ {𝑢, 𝑣, 𝑟}, consult (Morel et al.,
2024). □

In the identification of the input gain considering the static model
of the propellers, the regressors for each component of the velocity
contained a different set of parameters and therefore the identification
could be tackled in three independent steps. This is not exactly the
case here. Observing, for instance, components 1 and 5 of the regressor
𝑋𝑑 𝑦𝑛,𝑢, it is easy to see that there are 2 unknowns

(

𝛼 , 𝑅(1)
𝑢

)

, since ℎ is
known. Hence, the value of 𝛼 can be identified using just the regressor
of the surge. However, from the components 1 and 8 of the regressor
𝑋𝑑 𝑦𝑛,𝑣, one can identify

(

𝛼 , 𝑅(3)
𝑣

)

, obtaining, possibly, a different value
of 𝛼. Something similar happens with the regressor of the yaw. This
problem does not occur with 𝛽, as it appears to always be coupled with
ther parameters that are different for each component of the velocity.

To solve this issue, there are different options. One possible op-
tion would consist in considering different dynamic models for each
omponent, in other words, a different 𝛼𝑗 for each 𝑗 ∈ {𝑢, 𝑣, 𝑟}.

Although possible from a numerical perspective, this option does not
ook fully consistent with the underlying physics. Another option, the
ne implemented here, is to identify a unique 𝛼 valid for all velocities.
his implies solving an overdetermined system of equations, presented

n 3, since there are more equations than unknowns in the regressors
f the three velocities.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑋dyn,𝑢(1) = 𝛼 + ℎ𝑅(1)
𝑢

𝑋dyn,𝑢(5) = −𝛼(1 + ℎ𝑅(1)
𝑢 )

𝑋dyn,𝑣(1) = 𝛼 + ℎ𝑅(2)
𝑣

𝑋dyn,𝑣(8) = −𝛼(1 + ℎ𝑅(2)
𝑣 )

𝑋dyn,𝑟(1) = 𝛼 + ℎ𝑅(3)
𝑟

𝑋dyn,𝑟(9) = −𝛼(1 + ℎ𝑅(3)
𝑟 )

(35)

Remark 4. Please note that, with the proposed identification pro-
cedure considering dynamic propeller modelling, the value of some
parameters related to the lumped disturbances, such as 𝑃 (1,1)

𝑢 , could
ave two different values. Although this is, of course, impossible, it

is not particularly important since we are interested in identifying the
input gain, which will be uniquely determined.

Once the parameters are identified, the input gain can be obtained.
From the definition of the input gain in (11), using the force and torque
in (13), and the first-order dynamic model of the thrusts in (15), the
following dynamic model for the input gain is formulated as:

𝑮𝒅 𝒚 𝒏(𝑘) = ℎ𝑴−1𝛼𝝉(𝑘 − 1) + ℎ𝑴−1𝛽𝝉𝒔𝒕(𝑘 − 1), (36)

where 𝑮𝒅 𝒚 𝒏(𝑘) = [𝐺𝑑 𝑦𝑛,𝑢(𝑘), 𝐺𝑑 𝑦𝑛,𝑣(𝑘), 𝐺𝑑 𝑦𝑛,𝑟(𝑘)]𝑇 and 𝝉𝒔𝒕(𝑘) is made up of
the force 𝐹𝑢 and torque 𝜏𝑟 given by (17) and (18), which turn out to be
he static model equations for the force and torque. Subsequently, we
an group the expression ℎ𝑴−1𝝉(𝑘− 1) as 𝑮𝒅 𝒚 𝒏(𝑘− 1). Taking advantage
f this simplification, (36) becomes:

𝑮𝒅 𝒚 𝒏(𝑘) = 𝛼𝑮𝒅 𝒚 𝒏(𝑘 − 1) + ℎ𝑴−1𝛽𝝉𝒔𝒕(𝑘 − 1), (37)

which shows that the input gain allows now for a first-order dynamic
model.

This sets the groundwork for applying the equation across all veloc-
ties, culminating in a comprehensive application of the dynamic model
or input gain estimation as shown:

𝐺𝑑 𝑦𝑛,𝑢(𝑘) = 𝛼 𝐺𝑑 𝑦𝑛,𝑢(𝑘 − 1) +𝑋𝑑 𝑦𝑛,𝑢(10)
(

𝛿(𝑘 − 1)2 + 𝛥𝛿(𝑘 − 1)2
4

)

+𝑋𝑑 𝑦𝑛,𝑢(11)𝛿(𝑘 − 1), (38)
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𝐺𝑑 𝑦𝑛,𝑝(𝑘) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝛼 𝐺𝑑 𝑦𝑛,𝑝(𝑘 − 1) +𝑋𝑑 𝑦𝑛,𝑝(19)𝛿(𝑘 − 1)𝛥𝛿(𝑘 − 1)
+𝑋𝑑 𝑦𝑛,𝑝(21) 𝛥𝛿(𝑘−1)2

, (𝑓 , 𝑓 )
𝛼 𝐺𝑑 𝑦𝑛,𝑝(𝑘 − 1) ±𝑋𝑑 𝑦𝑛,𝑝(18)

(

𝛿(𝑘 − 1)2 + 𝛥𝛿(𝑘−1)2

4

)

+𝑋𝑑 𝑦𝑛,𝑝(19)𝛿(𝑘 − 1)𝛥𝛿(𝑘 − 1) ±𝑋𝑑 𝑦𝑛,𝑝(20)𝛿(𝑘 − 1)
+𝑋𝑑 𝑦𝑛,𝑝(21) 𝛥𝛿(𝑘−1)2

, (𝑓 , 𝑟)

𝛼 𝐺𝑑 𝑦𝑛,𝑝(𝑘 − 1) ±𝑋𝑑 𝑦𝑛,𝑝(18)
(

𝛿(𝑘 − 1)2 + 𝛥𝛿(𝑘−1)2

4

)

+𝑋𝑑 𝑦𝑛,𝑝(19)𝛿(𝑘 − 1)𝛥𝛿(𝑘 − 1) ±𝑋𝑑 𝑦𝑛,𝑝(20)𝛿(𝑘 − 1)
+𝑋𝑑 𝑦𝑛,𝑝(21) 𝛥𝛿(𝑘−1)2

, (𝑟, 𝑓 )

(39)

where 𝑝 ∈ {𝑣, 𝑟}.
Being a first-order model, the input gain cannot be computed only

with the information of the PWM signals but also requires an initial
ondition. This initial condition is generally unknown. However, we
an take advantage of the following property.

Property 1. Consider the evolution of the input gain given in (38)–(39).
Then, provided that 𝛼 < 1, the value of the input gain at any instant 𝑘′
sufficiently large mainly depends on the value of the PWM signals. In other
words, the influence of the initial condition vanishes with time.

Proof. The proof is straightforward since the input gain is a first-order
ystem with a transition matrix 𝛷(𝑘) = 𝛼𝑘. Provided that 𝛼 < 1, the

influence of the initial conditions vanishes as 𝑘 increases. □

Remark 5. The fact that 𝛼 < 1 could be inferred from the definition
f the dynamic model for the thrust in (15) since otherwise the thrust

could grow to infinity with zero input. However, without imposition,
a suitable value of 𝛼 is obtained with the proposed identification
procedure, as shown in Section 6.

6. Identification experiments, results and discussion

In this section, the conducted experiments and the obtained results
are presented and discussed. First, a detailed explanation of the ex-
erimental setup and the identification metrics used is provided. The
dentification results are then displayed using the second-order static
odel. The section concludes with the results obtained from the first-

rder dynamic model, including a discussion comparing both analysed
odels.

6.1. Experimental setup and identification metrics

The Yellowfish ASV was programmed to carry out a wide range of
trajectories, divided into two main categories: forward and circular
movements. The aim was to collect significant experimental data to ex-
citate the surge and yaw dynamics. In the case of forward movements,
manoeuvres were performed using constant and variable forward veloc-
ities, as well as zigzag trajectories. Similarly, for circular movements,
manoeuvres were designed to excite yaw dynamics at both constant and
variable rates, also integrating movements with constant and variable
orward velocity into the turns.

This extensive set of manoeuvres was intended to thoroughly evalu-
te the ASV performance in executing simple linear paths and complex

navigational patterns. These manoeuvres produced a detailed dataset
crucial for analysing and validating the navigational model, accurately
reflecting the ASV real-world performance under a variety of controlled
conditions.

The dataset was then strategically divided into two subsets: one
evoted to the identification of the surge dynamics, whose points
 B

8 
correspond to those in which forward movements were performed,
where both propellers are in the {𝑓 , 𝑓} zone; and another one for the
identification of the yaw and sway dynamics, including those points
that correspond to circular movements, considering the {𝑓 , 𝑟} and {𝑟, 𝑓}
zones and always disregarding any point in the {𝑟, 𝑟} zone, as it will not
be analysed in this identification process. Then, each subset is further
divided into a training set and a validation set. The complete dataset,
comprising 16,025 data points, with a higher concentration of data
within the {𝑓 , 𝑟} and {𝑟, 𝑓} zones compared to the {𝑓 , 𝑓} zone, divided
into 127 trajectory segments, resulting in 53.42 min of experiments, is
available in Morel (2024).

The way in which the dataset is split into training and validation
subsets is done in two different ways. First, all data points are randomly
ivided, according to a given percentage, into these two sets. The

second option randomly divides the trajectory segments, so that some
of them belong to the training dataset, and others to the validation
dataset. Since the segments have a fixed number of data points, this
partition will not achieve an exact division of the dataset in terms of
a given percentage but will try to approximate it as much as possible.
Table 3 presents the separation methods used, along with a description
of each; Fig. 4 shows the field in which the experiments were con-
ducted. It depicts a calm lake setting. Two paths are presented: one
generated by the internal Navio2 GNSS and the other by the external
GNSS, which is the one used for its higher satellite precision.

Regarding the values used for the validation analysis, the velocity
values obtained by the data preparation process of the experimental
results (𝝂) are the ground truth and are compared to the velocities
predicted with the identified parameters (𝝂̂).

Two well-known metrics are used for validation, the 𝑅2, or coeffi-
cient of determination, and the mean absolute error (MAE):

• The 𝑅2 is a statistical measure that represents the proportion
of variance in a dependent variable that is predictable from the
independent variables. It provides an indication of how well the
data points fit a model; the closer 𝑅2 is to 1, the better the
model explains the variability of the output in relation to the
input variables. It is a measure commonly used in least-squares
regressions (Cameron and Windmeijer, 1997).
For the problem at hand, this metric is computed as follows:

𝑅2
𝑗 = 1 −

∑𝑛
𝑘=1(𝝂𝑗 (𝑘) − 𝝂̂𝑗 (𝑘))2
∑𝑛
𝑘=1(𝝂𝑗 (𝑘) − 𝝂𝑗 )2

, (40)

where 𝑗 ∈ {𝑢, 𝑣, 𝑟} and 𝑛 is the number of points of the validation
set.

• The MAE is particularly effective for regressors that involve
multiple parameters because it provides a straightforward mea-
sure of the average magnitude of errors without considering
their direction, which makes it highly suitable for evaluating
the performance of models in predicting a wide range of out-
comes (Willmott and Matsuura, 2005). In this case, it is computed
as:

MAE𝑗 =
1
𝑛

𝑛
∑

𝑘=1
|𝝂𝑗 (𝑘) − 𝝂̂𝑗 (𝑘)|. (41)

6.2. Identification results for static propeller modelling

In the first analysis, the sensitivity of the identification results with
respect to the partition of the data is studied. To do so, a fixed 70% of
the dataset is used for training and the 30% left is used for validation.
To analyse the sensitivity, 20 random partitions are made and, for each
metric, the mean and Standard Deviation (SD) are computed. Table 4
presents the numerical results for the two partition methods.

From these data, two important conclusions can be drawn. First, the
andom partition in independent points renders slightly better results.
ut, most importantly, is the fact that the deviation is very small (much
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Table 3
Description of data separation methods for training data.

Separation method Description

By Segments Random grouping of the complete segments.
By Independent Points Random and independent selection of the individual data points.
Fig. 4. The experiment field and ASV path.
Table 4
Comparison of MAE and 𝑅2 metrics for different data separation methods using second-order static model.

𝐌𝐀𝐄𝑢 𝐒𝐃𝑢 𝐌𝐀𝐄𝑣 𝐒𝐃𝑣 𝐌𝐀𝐄𝑟 𝐒𝐃𝑟

By Segments 0.014377 2.9 × 10−3 0.011913 6.2 × 10−4 0.015895 2.1 × 10−3
By Independent Points 𝟎.𝟎𝟏𝟏𝟕𝟗𝟒 𝟏.𝟓 × 𝟏𝟎−𝟒 𝟎.𝟎𝟏𝟏𝟖𝟕𝟎 𝟏.𝟎 × 𝟏𝟎−𝟒 𝟎.𝟎𝟏𝟓𝟕𝟓𝟕 𝟐.𝟎 × 𝟏𝟎−𝟒

𝑹𝟐
𝒖 𝐒𝐃𝑢 𝑹𝟐

𝒗 𝐒𝐃𝑣 𝑹𝟐
𝒓 𝐒𝐃𝑟

By Segments 0.995708 2.3 × 10−3 0.987277 1.8 × 10−3 0.997468 1.2 × 10−3
By Independent Points 𝟎.𝟗𝟗𝟕𝟔𝟓𝟖 𝟗.𝟔 × 𝟏𝟎−𝟓 𝟎.𝟗𝟖𝟕𝟒𝟓𝟐 𝟑.𝟔 × 𝟏𝟎−𝟒 𝟎.𝟗𝟗𝟕𝟔𝟓𝟗 𝟕.𝟒 × 𝟏𝟎−𝟓
Table 5
MAE values for different training percentages using second-order static model.

Training % MAE𝑢 MAE𝑣 MAE𝑟 Validation % MAE𝑢 MAE𝑣 MAE𝑟
70 𝟎.𝟎𝟏𝟐𝟐𝟑𝟒 𝟎.𝟎𝟏𝟐𝟔𝟔𝟔 𝟎.𝟎𝟏𝟑𝟒𝟕𝟏 30 𝟎.𝟎𝟏𝟏𝟎𝟗𝟐 0.010599 0.020743
60 0.013645 0.012879 0.014153 30 0.011370 0.010596 0.020164
50 0.016374 0.014090 0.014068 30 0.011580 𝟎.𝟎𝟏𝟎𝟑𝟔𝟏 𝟎.𝟎𝟏𝟗𝟐𝟔𝟖
smaller with independent points). This allows us to conclude that the
way in which the data are partitioned does not have an important
impact on the predictive capabilities of the identified model. This
conclusion invites us to avoid the repetitions of the partitions in the
rest of the analysis.

Attending to the quantitative values observed, the identified models
show a really accurate prediction, in surge, sway, and yaw, with a
determination coefficient always higher than 0.98.

In the next analysis, the sensitivity to the number of points in the
training dataset is analysed. To do so, different percentages of points
in the whole dataset are considered, with a constant keeping 30% for
the validation dataset. The results are shown in Tables 5 and 6.

With respect to the MAE, there is no significant change as the train-
ing dataset is reduced. This allows us to conclude that the performance
of the model is consistent despite the reduction of data points.

Additionally, since a larger percentage of training might capture
more variability and complexity, these results could suggest that the
model is not overfitting to the training data. This is indicated by the
fact that, in some cases, the MAE values for the validation set are lower
9 
than those for the training set, implying that the model is not overly
fine-tuned to the specific details of the training data.

Comparing the results using 𝑅2, a concordance with the obtained
MAE values can be observed, allowing us to conclude that the model
achieves a good level of prediction.

Finally, some graphical analysis are shown. Although the metrics
provide very useful information, a graphical analysis allows us to un-
derstand the behaviour of the model, when it renders nice predictions,
and when it fails. For this part, the dataset is partitioned in segments,
this allowing us to observe dynamical behaviours.

As mentioned previously, the dataset was strategically divided into
two subsets: one dedicated to surge dynamics and the other to yaw
and sway dynamics. Consequently, the graphical representation of the
surge results uses a different time window compared to those of sway
and yaw, as they exhibit different movements.

Fig. 5 shows three portions of the validation set, illustrating the
estimated surge velocity during different manoeuvres, providing a wide
range of velocity values, and the performance of the parameters ob-
tained with the estimated velocity.
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Table 6
𝑅2 values for different training percentages using second-order static model.

Training % 𝑅2
𝑢 𝑅2

𝑣 𝑅2
𝑟 Validation % 𝑅2

𝑢 𝑅2
𝑣 𝑅2

𝑟

70 𝟎.𝟗𝟗𝟖𝟏𝟕𝟕 0.984567 𝟎.𝟗𝟗𝟖𝟔𝟎𝟐 30 𝟎.𝟗𝟖𝟕𝟕𝟕𝟒 0.991418 0.992662
60 0.996305 𝟎.𝟗𝟖𝟓𝟓𝟏𝟗 0.997190 30 0.987496 0.991008 0.992628
50 0.988801 0.982918 0.997262 30 0.987273 𝟎.𝟗𝟗𝟏𝟔𝟒𝟑 𝟎.𝟗𝟗𝟑𝟐𝟎𝟗
Fig. 5. Surge velocity 𝑢 and estimated velocity 𝑢̂ in the validation subset using second-order static model.
Fig. 6. Sway velocity 𝑣 and estimated velocity 𝑣̂ in the validation subset using second-order static model.
Fig. 7. Yaw rate 𝑟 and estimated yaw rate 𝑟̂ in the validation subset using second-order static model.
d
m

Figs. 6 and 7 present the sway velocity and the yaw rate, respec-
tively. In the yaw rate results, the zoomed-in section of the figure
reveals that the estimated values do not reach the maximum levels
during sharp turns. This can still be considered a valid response, as
the experimental data used for this identification involved more abrupt
movements than typical operations to capture the full range of the ASV

ovements.
Note that the time windows shown for the graphical results rep-

resent a small percentage of the total data obtained for the vali-
dation subset. Therefore, they should be considered alongside the
previously stated numerical results, which describe the errors for the
entire analysed dataset.

6.3. Identification results for dynamic propeller modelling

The same procedure is used to initially evaluate the mean values
and standard deviation of 20 randomly grouped values and is applied
10 
to the first-order dynamic model. However, in this case, since it is
a dynamic model, the independent points take into account both the
current values and those from the previous time step to estimate the
next one. The results presented in Table 7 are quite positive and show
very low standard deviation values. Consequently, for the subsequent
analysis, only one group of values randomly grouped together will be
examined.

In conducting the analysis to determine sensitivity to the number of
points in the training dataset, Tables 8 and 9 present the MAE and 𝑅2

results for the various percentages of points using the dynamic model.
Both the MAE and 𝑅2 values show minimal fluctuation in the

ifferent percentages, demonstrating the consistent performance of the
odel. Compared to the dynamic model, it is evident that using a

higher percentage of data for training produces consistently better
results.

Observing the graphical analysis, the same time windows are used
with identical training and validation datasets as for the previous model
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Table 7
Comparison of MAE and 𝑅2 metrics for different data separation methods using first-order dynamic model.

𝐌𝐀𝐄𝑢 𝐒𝐃𝑢 𝐌𝐀𝐄𝑣 𝐒𝐃𝑣 𝐌𝐀𝐄𝑟 𝐒𝐃𝑟

By Segments 0.011628 1.2 × 10−3 0.009654 6.3 × 10−4 0.007861 5.5 × 10−4
By Independent Points 𝟎.𝟎𝟏𝟏𝟕𝟕𝟎 𝟏.𝟏 × 𝟏𝟎−𝟒 𝟎.𝟎𝟎𝟗𝟒𝟏𝟒 𝟏.𝟎 × 𝟏𝟎−𝟒 𝟎.𝟎𝟎𝟕𝟖𝟐𝟑 𝟔.𝟑 × 𝟏𝟎−𝟓

𝑹𝟐
𝒖 𝐒𝐃𝑢 𝑹𝟐

𝒗 𝐒𝐃𝑣 𝑹𝟐
𝒓 𝐒𝐃𝑟

By Segments 0.997505 1.5 × 10−3 0.990236 1.5 × 10−3 0.999523 1.8 × 10−4
By Independent Points 𝟎.𝟗𝟗𝟕𝟕𝟕𝟔 𝟔.𝟓 × 𝟏𝟎−𝟓 𝟎.𝟗𝟗𝟏𝟎𝟓𝟓 𝟑.𝟑 × 𝟏𝟎−𝟒 𝟎.𝟗𝟗𝟗𝟓𝟓𝟏 𝟏.𝟎 × 𝟏𝟎−𝟓
Table 8
MAE values for different training percentages using first-order dynamic model.

Training % MAE𝑢 MAE𝑣 MAE𝑟 Validation % MAE𝑢 MAE𝑣 MAE𝑟
70 𝟎.𝟎𝟏𝟏𝟔𝟑𝟕 𝟎.𝟎𝟏𝟎𝟕𝟖𝟓 𝟎.𝟎𝟎𝟖𝟒𝟏𝟓 30 𝟎.𝟎𝟑𝟑𝟓𝟏𝟑 𝟎.𝟎𝟎𝟕𝟑𝟖𝟔 𝟎.𝟎𝟏𝟔𝟕𝟕𝟎
60 0.012871 0.011076 0.008876 30 0.034702 0.008325 0.030219
50 0.015348 0.012492 0.008611 30 0.043901 0.008154 0.022668
Table 9
𝑅2 values for different training percentages using first-order dynamic model.

Training % 𝑅2
𝑢 𝑅2

𝑣 𝑅2
𝑟 Validation % 𝑅2

𝑢 𝑅2
𝑣 𝑅2

𝑟

70 𝟎.𝟗𝟗𝟖𝟒𝟒𝟓 0.987943 𝟎.𝟗𝟗𝟗𝟓𝟕𝟑 30 𝟎.𝟗𝟒𝟑𝟓𝟓𝟗 𝟎.𝟗𝟗𝟔𝟐𝟐𝟓 𝟎.𝟗𝟗𝟕𝟓𝟗𝟗
60 0.996819 𝟎.𝟗𝟖𝟖𝟓𝟑𝟐 0.999137 30 0.939760 0.995190 0.992966
50 0.989830 0.985986 0.999189 30 0.909676 0.995331 0.996110
Fig. 8. Surge velocity 𝑢 and estimated velocity 𝑢̂ in the validation subset using first-order dynamic model.
Fig. 9. Sway velocity 𝑣 and estimated velocity 𝑣̂ in the validation subset using first-order dynamic model.
m

s

c

analysed. This approach enables a thorough comparison and evaluation
of both models analysed in this section.

Fig. 8 displays the estimated surge velocity, and Figs. 9 and 10 show
the results for sway velocity and yaw rate, respectively.

Regarding the surge results, the estimated values exhibit
ronounced peaks and appear less smooth, as reflected in the metrics

previously presented.
Considering sway velocity and yaw rate, the model demonstrates

ood and smooth tracking of the estimated velocities, although some
eaks are more pronounced than those of the actual velocities, partic-
larly in regions with abrupt velocity changes.
 e

11 
To obtain the estimated velocity values, it is necessary to deter-
ine the value of 𝛼 using the identification equations for the three

velocities 3. The resulting value of 𝛼 is 0.998, which ensures the
tability of the model, as discussed in Remark 5.

6.4. Discussion and comparison of the static and dynamic models

Finally, the differences between static and dynamic models are dis-
ussed. In particular, the first-order dynamic model produces superior

results for the sway velocity and yaw rate, according to the metrics
mployed. Furthermore, graphical analysis shows improved accuracy in
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Fig. 10. Yaw rate 𝑟 and estimated yaw rate 𝑟̂ in the validation subset using first-order dynamic model.
Table 10
Identified parameters and corresponding units of measurement used for the second-order static model.

Second-order static model

Index 𝑋𝑢 Unit 𝑋𝑣 Unit 𝑋𝑟 Unit

1 −0.0616 (m/s)−1 −0.0214 (m/s)−1 0.0424 (m/s)−1
2 0.0272 (m/s)−1 −0.0714 (m/s)−1 −0.1168 (m/s)−1
3 −0.0098 (m/s)−1 −0.0334 (m/s)−1 0.0369 (m/s)−1
4 0.0072 – −0.0123 (m/s)−1 −0.0077 (m/s)−1
5 −0.0001 m/s −0.0400 (m/s)−1 −0.0310 (m/s)−1
6 −𝟎.𝟎𝟏𝟒𝟓 m/s 0.0329 (m/s)−1 −0.0931 (m/s)−1
7 𝟎.𝟏𝟒𝟎𝟑 m/s 0.0407 – 0.0882 –
8 0.0334 – −0.1505 –
9 −0.0018 m/s 0.0055 m/s
10 𝟎.𝟎𝟎𝟗𝟐 m/s −𝟎.𝟎𝟖𝟕𝟐 m/s
11 −𝟎.𝟎𝟑𝟖𝟏 m/s −𝟎.𝟎𝟕𝟒𝟑 m/s
12 −𝟎.𝟎𝟎𝟑𝟐 m/s 𝟎.𝟎𝟖𝟏𝟒 m/s
13 −𝟎.𝟎𝟓𝟎𝟓 m/s 𝟎.𝟑𝟐𝟎𝟔 m/s
Table 11
Identified parameters and corresponding units of measurement used for the first-order dynamic model.

First-order dynamic model parameters

Index 𝑋𝑢,𝑑 𝑦𝑛 Unit 𝑋𝑣,𝑑 𝑦𝑛 Unit 𝑋𝑣,𝑑 𝑦𝑛 Unit

1 0.8062 – 0.6904 – 0.9886 –
2 0.0893 (m/s)−1 −0.0091 (m/s)−1 0.0577 (m/s)−1
3 −0.1095 (m/s)−1 0.0237 (m/s)−1 0.1845 (m/s)−1
4 −0.0341 (m/s)−1 −0.0261 (m/s)−1 −0.0190 (m/s)−1
5 −0.7725 – −0.0005 (m/s)−1 −0.0054 (m/s)−1
6 −0.1395 (m/s)−1 0.4328 (m/s)−1 0.0667 (m/s)−1
7 0.1622 (m/s)−1 0.3075 (m/s)−1 −0.0020 (m/s)−1
8 0.0301 (m/s)−1 −0.6978 – −0.2723 –
9 0.0016 m/s −0.1285 – −1.0430 –
10 −𝟎.𝟎𝟏𝟎𝟔 m/s −0.0085 (m/s)−1 −0.1305 (m/s)−1
11 𝟎.𝟎𝟔𝟏𝟏 m/s −0.0494 (m/s)−1 −0.2120 (m/s)−1
12 0.0081 (m/s)−1 −0.0059 (m/s)−1
13 0.0004 (m/s)−1 0.0577 (m/s)−1
14 −0.4353 (m/s)−1 −0.1116 (m/s)−1
15 −0.3078 (m/s)−1 0.0358 (m/s)−1
16 0.1478 – 0.3419 –
17 −0.0007 m/s −0.0013 m/s
18 −𝟎.𝟎𝟎𝟕 m/s −𝟎.𝟎𝟒𝟐𝟐 m/s
19 −𝟎.𝟎𝟎𝟕 m/s −𝟎.𝟎𝟑𝟖𝟓 m/s
20 𝟎.𝟎𝟏𝟎𝟏 m/s 𝟎.𝟎𝟑𝟗𝟒 m/s
21 −𝟎.𝟎𝟐𝟏𝟒 m/s 𝟎.𝟎𝟏𝟔𝟖 m/s
the estimated yaw rate, particularly in sharper curves, although some
inor peaks persist compared to the second-order model.

In contrast, the surge velocity shows better results when using the
tatic model. To understand this difference, it is important to note that
he dataset used to identify the surge dynamics parameters is smaller
han that for the sway and yaw. Furthermore, in the dynamic model, a
ingle value of 𝛼 is applied at all three velocities, which seems to favour
he dynamics of the sway and yaw.

The static and dynamic models perform well, with the dynamic
model offering slightly better results; however, it is more complex
to implement and requires the stability of the dynamic model of the
ropellers (with 𝛼 < 1). Therefore, choosing which model to use
ltimately depends on the preference and requirements of the user.
12 
To conclude, Tables 10 and 11 present the values of the parameters
identified for the static second-order model, as well as the values
obtained using the dynamic first-order model.

The tables highlight the values required for the input gain equations
presented in (23) and (28), using the vessel Yellowfish, where the
dynamic model also incorporates the previously mentioned 𝛼 value. All
identified parameter values are presented to enable replication of the
results.

7. Conclusions

This work presents a parameter identification methodology to de-
termine the input gain of an ASV with fully unknown coefficients. The
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unknown model parameters can be estimated through position and
heading measurements, thus eliminating the need for acceleration data.

This study presents a practical method for jointly identifying the
propeller model and the inertia matrix of an ASV, which means the
effect of the propellers on its motion. The identification method in-
cluded, with experimental results, both a second-order static model and
 first-order dynamic model for the actuation system.

The models were applied to obtain the parameters of the Yellowfish
SV, with significant emphasis on experimental data acquisition to
nsure robust parameter functionality across a significant operational

range.
The effectiveness of the proposed methods is validated by applying

identification metrics to the results, also allowing comparison between
different models. For the second-order static model, a determination
coefficient greater than 0.98 was achieved for surge velocity, sway ve-
locity, and yaw rate. In contrast, when applying the first-order dynamic

odel to the same experimental data, the results yielded a range of 0.94
o 0.99 across all three velocities. These consistent values highlight the

reliability and effectiveness of the models in accurately capturing vessel
dynamics.

Furthermore, the importance of replicating the results is demon-
trated, as it contributes to a deeper understanding of the models. To

support this, the identified values obtained are reported in Tables 10
and 11, and all experimental data related to this work are available
rom Morel (2024).
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