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ABSTRACT

Currently, underwater mines and unexploded ordnance represent a persistent threat to maritime navigation
and the environment. In submarine warfare, detecting such objects is particularly challenging, especially
when they are abandoned and buried under sand. To address this issue, mine countermeasures have
been developed that take advantage of various technologies, including acoustic and electromagnetic
waves. Recently, new modeling approaches for ground penetrating radar (GPR) have led to significant
advancements in the detection of buried landmines. The aim of this work is therefore to adapt the GPR
methodology to enhance the detection and classification of underwater targets using sonar systems.
To achieve this, laboratory experiments were conducted to simulate various scenarios involving a
sonar sensor, a sediment layer, and various targets. Particular attention was given to understanding
the measurements and pre-processing steps specific to the sensor. Subsequently, extensive numerical
simulations were performed to validate and compare the results obtained experimentally. This comparison
involved introducing the concept of a perfect acoustic reflector (PAR), which is useful for retrieving the
transfer functions of the sonar-hydrophone-multilayered media system. These experiments highlighted
both the limitations and potential of the model for analyzing realistic scenarios. Technical limitations such
as the size of the water tank and sensor limitations, posed challenges to fully achieving the objectives.
Despite these difficulties, the results contribute to a deeper und...
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Abstract

Currently, underwater mines and unexploded ordnance represent a persistent threat to maritime
navigation and the environment. In submarine warfare, detecting such objects is particularly chal-
lenging, especially when they are abandoned and buried under sand. To address this issue, mine
countermeasures have been developed that take advantage of various technologies, including acoustic
and electromagnetic waves.

Recently, new modeling approaches for ground penetrating radar (GPR) have led to significant
advancements in the detection of buried landmines. The aim of this work is therefore to adapt the
GPR methodology to enhance the detection and classification of underwater targets using sonar
systems.

To achieve this, laboratory experiments were conducted to simulate various scenarios involving a
sonar sensor, a sediment layer, and various targets. Particular attention was given to understanding
the measurements and pre-processing steps specific to the sensor.

Subsequently, extensive numerical simulations were performed to validate and compare the results
obtained experimentally. This comparison involved introducing the concept of a perfect acoustic reflec-
tor (PAR), which is useful for retrieving the transfer functions of the sonar-hydrophone-multilayered
media system.

These experiments highlighted both the limitations and potential of the model for analyzing realistic
scenarios. Technical limitations such as the size of the water tank and sensor limitations, posed
challenges to fully achieving the objectives. Despite these difficulties, the results contribute to a
deeper understanding of acoustic propagation mechanisms and pave the way for future optimizations
in underwater detection applications by using the approach of adapting the GPR methodology.
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Chapter 1

Introduction

1.1 General context

Since the nineteenth century, the use of underwater mines has increased. More than 550,000 underwater
mines have been deployed only during World War II, both for offensive purposes and to defend aquatic
territories. However, not all of these mines have been neutralized and still pose a significant threat
to navigation and other maritime activities. Furthermore, the presence of underwater mines, along
with UXO, poses an environmental concern. UXOs refers to explosive munitions that were armed
and used, but did not detonate as intended. Both underwater mines and UXOs contain material
components and chemical substances that can lead to environmental contamination [Tellez et al.,
2017] [McDonald, 2008].

Today’s mines are even more sophisticated and dangerous. They are stealthier, harder to detect, and
equipped with advanced electronics that make them highly effective and elusive [Staelens, 2009]. In
order to counteract the danger posed by these mines, various measures are taken. These precautions
are called Mine Countermeasures (MCM). They can be both passive and active. One of these active
measures is called ’mine hunting’, which consists in detecting mines within a certain perimeter. Thus,
mine hunting consists of four main stages: detection, classification, identification, and disposal. The
first involves finding potential targets through the use of signals (magnetic or acoustic). The second
step is to determine whether the target is a mine-like object or a completely harmless object. The
third step involves the use of additional measures to confirm more precisely what type of mine it is,
and finally the last step involves neutralizing the explosive object [Hożyń, 2021].

1.2 The sub-bottom scanning sonar (SBSS) project

In active measures against underwater mines, sonar systems play a crucial role in the location
and identification of potentially dangerous objects buried beneath the seabed. The Sub-Bottom
Scanning Sonar (SBSS), a project carried out between the Belgian navy and various public and
private institutions, stands out for its innovative approach, focused on developing a low-frequency,
high-speed sonar system to detect, classify and identify targets, either above the seabed or buried
within the sediment.

The SBSS system uses frequencies below 20 kHz to take advantage of the specific resonances of buried
objects, helping to differentiate them. The SBSS transmitter emits wideband chirp signals within
an angular sector of ±120°, providing extensive coverage and capturing echoes through a system
of hydrophones oriented transversely to the device’s trajectory (across the track). Subsequently, a
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process known as Synthetic Aperture Sonar (SAS) is applied longitudinally (along-track).

This signal processing method, combined with detailed acoustic analysis, enables a more efficient
distinction between real targets and harmless objects, thus reducing the number of false positives
often seen with traditional sonar technologies. The use of acoustic resonances, still underutilized in
this field, offers a significant advantage for target recognition.

Building on the framework of the SBSS project, this thesis aims to collect experimental data and
apply a GPR method to improve the classification process of mine-like objects.

Figure 1.1: Simulated image of an Autonomous Underwater Vehicle (AUV) conducting mine and
UXOs search using sonar. Image from [Hurtado Erasso, 2024].

1.3 Objectives

1.3.1 General objective

The general objective of the thesis is to adapt a proven GPR methodology that aims to enhance the
signals received by a sonar and therefore improve the classification process of targets. Specifically,
this work leverages the analogies between electromagnetic and acoustic wave propagation to apply
advanced signal processing techniques originally developed for GPR such as the modeling approaches
proposed by Lambot et al. [2004] and Lopera et al. [2007]. These methods include the characterization
and filtering of parasitic reflections, retrieval of transfer functions, and inversion of Green’s functions
to localize and identify buried objects.

1.3.2 First specific objective

The first specific objective is to design an experiment involving a sonar sensor. The purpose of this
experiment is to carry out and understand the measurements and pre-processing of the data in order
to retrieve the raw full waveform, specifically cleaned of the gain function, for multiple scenarios.
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1.3.3 Second specific objective

The second specific objective is to compare and validate the experimental results of the scenarios
against numerical simulations. This comparison involves introducing the concept of a perfect acoustic
reflector (PAR). This concept will also be useful for subsequent simulations aimed at retrieving the
transfer functions of the sonar-hydrophone-multilayered media system. To achieve this, measurements
with a PAR and results from the Green’s function of 3D elastic wave propagation in a multilayered
medium are required.

1.3.4 Third specific objective

The third specific objective is to perform measurements for a set of configurations involving the
concept of layers as well as targets. Thus, various layer thicknesses and targets will be used to apply
the GPR methodology.
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Chapter 2

State of the art

2.1 Elastic and acoustic waves

When an acoustic wave (an oscillatory pressure disturbance) propagates in a fluid and encounters
an immersed solid object, it induces elastic waves within that object. These elastic waves propa-
gate through all parts of the structure and, in turn, generate pressure waves in the surrounding
fluid, known as scattered waves or echoes [Burnett, 2015]. These concepts have direct applications
in the propagation of waves through solids and fluids. The pioneering work of Newton, Hooke,
Cauchy, and Navier laid the foundations for understanding dynamic elasticity, allowing us to pre-
dict and explain the propagation of disturbances in solids [Sánchez-Sesma and Iturrarán-Viveros, 2021].

Waves, whether elastic or acoustic (so named because they are responsible for the propagation of
sound in a medium), are disturbances that propagate through materials, carrying energy without
causing a permanent displacement of the material itself. As these waves travel through a material,
they induce a temporary deformation, and once the wave dissipates, the material returns to its original
shape. This behavior is characteristic of elastic waves, including body waves, a term used to describe
waves propagating through the interior of any elastic medium. In the context of Earth, body waves
are referred to as seismic waves [Selim Saleh, 2021]. These waves, divided into P-waves (longitudinal
or compression) and S-waves (transverse or shear), and which differ in the way they move (see Figure
2.1), directly depend on the elastic properties of the materials through which they travel (e.g., density,
Young’s modulus, shear modulus, and Poisson’s ratio) [Walley and Field, 2016].

The elasticity of a material, which is an approximation of its behavior under low deformation, helps to
better understand this phenomenon. An ideal elastic material deforms proportionally to the applied
load and returns to its original state without incurring damage. Thus, an elastic wave in this context
is a mechanical disturbance that causes particle oscillations around their equilibrium position, without
permanent change. However, in real materials, this propagation is affected by dissipation mechanisms,
leading to wave attenuation depending on the distance traveled. The attenuation rate generally
depends on the frequency of the wave, while the velocity determines how quickly the disturbance
propagates through the medium [Walley and Field, 2016].

Acoustic waves, which propagate in fluids such as air and water, are a subdivision of elastic waves with a
notable difference: they are always longitudinal. Elastic waves traveling in solids can also be transverse
[Sánchez-Sesma and Iturrarán-Viveros, 2021]. In the field of oceanography, this understanding of
acoustic and elastic waves is essential, particularly to predict the acoustic scattering by underwater
objects [Burnett, 2015].
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Figure 2.1: P-wave and S-wave motion. The arrow shows the direction that the wave is moving
[Selim Saleh, 2021]

2.2 Governing equations

2.2.1 Elastic waves

Elastic waves are longitudinal and shear perturbations in solids, represented by displacement, pressure,
or even velocity fields. The foundational work of Newton, Hooke, Cauchy, and Navier established
the basis of dynamic elasticity theory in the early 19th century. Among the simplest solutions to
the wave equation are plane waves, first described by D’Alembert. These plane waves are crucial
for studying the propagation of elastic waves, especially in layered media and on material surfaces
[Sánchez-Sesma and Iturrarán-Viveros, 2021].

The main physical variables are as follows:

• u(x, t): the displacement (time-dependent vector field),

• ε: the strain tensor, defined as

ε =
1

2
(∇u+∇uT ), (2.1)

where ∇ is the nabla operator, used to calculate the gradient (∇), the divergence (∇ ·u), or
the rotational (∇× u)

• σ: the stress tensor which was developed by Cauchy and is related to the strain by Hooke’s law:

σ = λ(∇ ·u)I+ 2µε, (2.2)

where λ and µ are the Lamé parameters also known as the Lamé’s constant and the Shear
modulus, respectively. The units of λ and µ are both Pa (Pascal). λ refers to longitudinal waves
(compressional waves) and µ corresponds to transverse waves (shear waves).
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The wave equation for an isotropic medium (where all the waves travel at the same speed regardless
of the direction in which they propagate), derived from the conservation of momentum (

∑
F⃗ = ma⃗,

where m is the mass and a⃗ is the resulting acceleration), is given by Demanet [2012] as:

ρ
∂2u

∂t2
= ∇(λ∇ ·u) +∇ · [µ(∇u+ (∇u)T )], (2.3)

where ρ is the density of the medium (kg/m3).

By using vector identities, and by using the assumption that λ and µ are constant, this equation can
be simplified to:

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ ·u)− µ∇× (∇× u). (2.4)

Decomposing the displacement u into a scalar potential ϕ (longitudinal waves) and a vector potential
ψ (transverse waves) via the Helmholtz decomposition:

u = ∇ϕ+∇× ψ, (2.5)

we obtain the following wave equations [Dourado, 2015]:

∂2ϕ

∂t2
= c2P∆ϕ, (2.6)

∂2ψ

∂t2
= c2S∆ψ, (2.7)

where the wave speeds are given by:

cP =

√
λ+ 2µ

ρ
, (2.8)

cS =

√
µ

ρ
, (2.9)

with corresponding wave numbers,

kP =
ω

cP
, (2.10)

kS =
ω

cs
, (2.11)

where ω is the angular frequency (ω = 2π*f , where f is the frequency), kp and ks are respectively
the wave number in rad/m of the P-waves and S-waves. Finally, the wave speed c corresponds to the
speed of P-waves (cP ) and S-waves (cS) Note that P-waves propagate faster than the S-waves, with
cP ≥

√
2cS.

Note : The assumption that λ and µ are constant is a very strong one: there is a lot of physics in the
coupling of ϕ and ψ that the above reasoning does not capture (material heterogeneity, non-linear
elasticity, anisotropy, and viscoelastic dissipation).

2.2.2 Acoustic waves

Acoustic waves can be seen as a special case of elastic waves, occurring in fluid media (liquids or
gases), where only compressional waves are present (no shear waves). In this case, the displacement u
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is reduced to a scalar pressure field p(x, t), and the equation of the elastic wave is simplified.

The governing equations for acoustic waves are ([Demanet, 2012]):

∂v

∂t
= − 1

ρ0
∇p, (2.12)

∂p

∂t
= −κ0∇ ·v, (2.13)

where ρ0 is the density and κ0 is the bulk modulus (more information about the bulk modulus in the
Appendix A). They are both related to the wave speed c through κ0 = ρ0c

2.

Combining these two equations yields the scalar wave equation for pressure:

∂2p

∂t2
= c2∆p. (2.14)

This equation is analogous to the longitudinal wave equation for elastic waves.

2.3 Reflection and transmission coefficients

The interaction of an incident wave at the interface between two media with different acoustic
impedances results in a reflected wave and a transmitted wave, as illustrated in Figure 2.2. The angles
of incidence, reflection, and transmission are denoted by θ, θr, and θ1, respectively. However, when
the interface is not flat, the wave may scatter in different directions, leading to multiple reflections or
diffractions. Additionally, when the sediment is not a fluid, the waves may generate surface waves
like Rayleigh waves. Wave propagation can become highly complex [Urick, 1983].

The reflection coefficient V and the transmission coefficient W are defined as ([Pierce, 2019]
[Brekhovskikh and Lysanov, 2006]):

V =
Z1 − Z

Z1 + Z
, (2.15)

W = 1 + V, (2.16)

where Z = ρc/ cos θ and Z1 = ρ1c1/ cos θ1 are the acoustic impedances of medium 1 and medium 2.
Here, ρ and c denote the density and speed of sound in the medium.

The relationship between the angles of the incident and transmitted waves is governed by Snell’s law:

sin θ

sin θ1
=

c

c1
. (2.17)

In accordance with the law of reflection, the angle of incidence θ is equal to the angle of reflection θr:

θr = θ. (2.18)
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Figure 2.2: Schematic representation of wave interaction at the interface between two layers. The
angles of incidence (θ), reflection (θr), and transmission (θ1) are defined with respect to the normal

to the interface. The reflection coefficient (V ) and transmission coefficient (W ) are the wave
amplitudes between the reflected and transmitted waves.

2.4 Far field and near field

Sonar technology uses acoustic waves to detect and locate underwater objects. The propagation of
sound from the source can be divided into two distinct regions which are important to differentiate:
the near-field and the far-field. These two regions are characterized by their distance from the sound
source.

2.4.1 Near field

The near field is the region located in the direct vicinity of the sound source. Generally, this distance
is defined as being less than one wavelength of the emitted sound. Thus, it is located at a distance d
such that:

d <
D2

λ
(2.19)

Here, D represents the diameter of the transmitting antenna and λ the wavelength of the sound
[Urick, 1983].

In this region, acoustic waves are still in the formation process and are characterized by relatively
complex variations in acoustic pressure and particle velocity, largely due to numerous interferences
originating from different points of the sound source [Clay and Medwin, 1977]. For this reason, the
data that can be collected in this specific area are difficult to interpret without specialized processing.
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2.4.2 Far field

The far field, on the other hand, is located beyond the near field, where acoustic waves behave and
propagate in a more coherent manner and can be approximated as plane waves. The far field begins
at a distance [Lurton, 2010]:

d >
D2

λ
(2.20)

In this zone, the acoustic waves are more uniform and their behavior is easier to predict. This
area is much more widely used by sonar systems due to its characteristics and is particularly useful
for object detection Clay and Medwin [1977]. Note that the target itself behaves similarly to an
antenna, producing an echo that can propagate in both the near and far fields. In non-monostatic
configurations (when source and receiver are not aligned in the same direction), hydrophones are
preferably positioned in the far field of the target’s echo, where acoustic waves are more uniform and
less affected by spatial variations.

2.5 Analogy between GPR and sonar

GPR has evolved over the last two decades, establishing itself as an important non-invasive electro-
magnetic technology in fields as diverse as environmental engineering or even archaeology [Tran et al.,
2013]. One of GPR’s major advances lies in its ability to detect landmines of any material. This
technology offers a depth range that is greater than that of conventional metal detectors. These same
characteristics make GPR a highly promising and effective method for mine clearance operations
[Giannakis et al., 2015].

Acoustic waves and electromagnetic waves may appear different at first glance: the former propagate
through particle vibrations in a medium, such as air or water, while the latter consist of variations in
electric and magnetic fields and can propagate even in a vacuum. However, similarities can be drawn
between these two types of waves, particularly in terms of the mathematical equations that describe
them. Just look at how similar the pressure variations in an acoustic wave are to the electric field
variations in an electromagnetic wave [Carcione, 2007].

This means that the techniques and concepts used to understand acoustic waves and electromagnetic
waves could be applied to each other. The aim of this thesis is to reproduce some of the advances
made with GPR and apply them to sonar technology.

For the particular case of far-field GPR with applications to planar layered media, Lambot et al.
[2004] proposed a radar equation in frequency domain that accounts for all antenna effects through
frequency-dependent global reflection and transmission coefficients, but also for wave propagation in
layered media through 3-D Green’s functions. This integrated antenna–medium model relies on the
assumption that the spatial distribution of the backscattered field locally tends to a plane wave over
the antenna aperture in far-field conditions [Lambot and André, 2014].

By adapting the approaches proposed by Lambot et al. [2004] for GPR and those proposed by Lopera
et al. [2007] for landmine detection, it is possible to optimize the processing of sonar signals to locate
and even identify buried objects. This method relies on filtering out parasitic reflections and retrieving
the radar transfer functions.

When a signal is measured by sonar, it could be modeled by a transfer equation inspired by techniques
used in GPR. The equation, for the case of the GPR, is expressed as follows [Lambot et al., 2004]:
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S(ω) = Hi(ω) +
H(ω)G(ω)

1−Hf (ω)G(ω)
, (2.21)

with ω being the angular frequency and where:

• S(ω) is the signal measured by the GPR in frequency,

• Hi(ω) corresponds to the internal reflections of the transducer,

• H(ω) represents the emission-reception transfer function of the transducer,

• Hf (ω) models the multiple reflections between the transducer and the ground,

• G(ω) is the acoustic Green’s function, describing the propagation of waves in the ground.

To improve the signal, it is important to characterize the different transfer functions. This can be
done in two steps:

1. Measurement of Hi(ω): This transfer function, representing the internal reflections of the
transducer, can be obtained by performing free space measurements, without any obstacle in
front of the transducer.

2. Measurement of H(ω) and Hf (ω): To isolate these functions, measurements are made above
a reflective surface, such as a metal plate in the case of electromagnetic waves or, for compression
waves, a water-air interface (see Section 4.1.2).

Next, to extract the ground response and eliminate parasitic effects of the transducer, the following
equation is used (from (2.21)) to retrieve a measured Green’s function:

G∗(ω) =
S(ω)−Hi(ω)

H(ω) + S(ω)Hf (ω)−Hi(ω)Hf (ω)
, (2.22)

where G∗(ω) is the filtered transfer function, corresponding to the response of the ground without
parasitic reflections. This equation eliminates the internal reflections of the transducer.

Once the signal filtered from the antenna effects is recovered, it must be filtered again to remove the
effects caused by multiple surface reflections (between the antenna and the ground). To achieve this,
a computed Green’s function describing wave propagation between the antenna (located in the air)
and the ground surface must be subtracted from the radar signal as proposed by Lopera et al. [2007].
To compute this function, a few parameters must be determined using an inversion method. These
parameters may be the antenna height or the dielectric permittivity of the soil surface. The inversion
problem is formulated in the least-squares sense, and the objective function is accordingly defined as
follows:

ϕ(b) =
N∑
i=1

∣∣G∗
obs,i −G∗

mod,i(b)
∣∣2 , (2.23)

where:

• b is the vector of parameters to estimate (e.g., antenna height, soil surface dielectric permittivity),

• G∗
obs,i is the observed Green’s function,

• G∗
mod,i(b) is the simulated Green’s function.
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Once these parameters are determined, it becomes possible to compute a synthetic Green’s function
and subtract it from the filtered data (G∗(ω)). We have now the signal without the internal reflections
of the system and additionally without the ground reflection. By using migration techniques to
reconstruct the reflecting structure present in the subsurface and by focusing the reflections back
to the true position of the object, it is then possible to determine the depth at which the object is
buried.

2.6 Mine Countermeasures (MCMs)

As mining technology progresses, MCMs have evolved to become more sophisticated and advanced.
They are equipped with detection technologies applicable to various domains, such as optics, acoustics,
and electromagnetism [Cong et al., 2021]. Today, naval forces employ a variety of strategies for mine
detection and neutralization, with the aim of minimizing human involvement in dangerous underwater
operations. This shift toward reducing human risk has led to the use of AUV, Remotely Operated
Vehicles (ROV), and Underwater Surface Vehicles (USV) within MCMs units [Cui, 2018]. These
vehicles are often equipped with sensors and are capable of autonomously performing missions with
high precision, thus improving the complexity and effectiveness of MCMs [Sun et al., 2021].

The many types of sonar used in underwater exploration are designed to meet relatively specific and
varied operational requirements. The choice of frequency, high or low, depends on factors such as the
target’s position relative to the seabed and its size. High-frequency devices offer higher resolution,
making them suitable for detecting small objects or mapping detailed features of the seabed. However,
low-frequency devices are better suited to detecting larger objects or targets buried deeper or shallower
in the seabed, because of the greater penetration of the waves. The following is a non-exhaustive list
of all sonar types used for underwater exploration.

2.6.1 Single-beam echo sounder (SBES)

It is a long-standing invention, since studies involving the use of SBES or Single-Beam Sonar (SBS)
were already being carried out when interest in ocean excavations began, as in the case of the sinking
of the Titanic in 1912 [Wölfl et al., 2019]. Nevertheless, its use is still very much alive today, thanks
to numerous technological upgrades. The SBES is responsible for the discovery of 18% of the world’s
ocean floor [Mayer et al., 2018]. SBSs incorporate piezoelectric transducers based on crystals or ceram-
ics that can send and receive acoustic signals. By calculating the travel time of the acoustic wave and
knowing the speed at which it travels, it is possible to determine the depth of the seabed [Mayer, 2006].

This part on SBS/SBES will not be further detailed here, as it is the subject of an entire section
(Section 3.1) later in this work.

2.6.2 Multi-beam echo sounder (MBES)

The multi-beam echo sounder (MBES) represents a major advancement in underwater mapping.
Unlike single-beam sonar, which emits a single beam to measure depth, the MBES emits multiple
beams simultaneously, covering a wide swath of the seafloor.

This capability allows it to capture information over a large area, significantly improving the accuracy
and efficiency of bathymetry surveys. Bathymetry is the study and measurement of ocean depths
and underwater topography [Dierssen and Theberge, 2020] as in the case of Figure 2.3. To capture
data from deeper ocean regions, low-frequency beams, often below 20 kHz, are used because they
attenuate slowly, allowing for greater reach. However, MBES systems mounted on submersibles, which
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generally operate at higher frequencies, achieve higher resolution with a smaller coverage area due
to shorter ranges and smaller "footprints" on the seabed, despite the rapid decay of high-frequency
signals in seawater. This setup makes high-resolution surveys feasible, even at shallow depths. The
success of MBES surveys also relies on post-survey data processing, which includes adjusting for sound
speed profiles, detecting anomalies, and stitching overlapping swaths [Sun et al., 2021] [Violante, 2020].

Figure 2.3: Raw MBES data that are color-coded according to depth (hot colors are shallower).
From [Calder and Mayer, 2003]

Technically, the MBES system comprises two orthogonally mounted linear acoustic arrays, allowing a
narrow beam to illuminate a corridor along the path of the ship. During the same time, multiple
receiving channels with beams spaced at varying angles along the track capture data, generating a
series of narrow footprints. Within each footprint, the system estimates the slant range to the seabed
and measures the backscatter intensity, producing a detailed bathymetric and seafloor backscatter
map [Hughes Clarke, 2018].
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Figure 2.4: Illustration of sonar geometry, followed by an illustration of a single transmitted beam
and, finally, a presentation of the many beams transmitted and received by a multi-beam sonar from

[Hughes Clarke, 2018]

2.6.3 Sub-bottom profiler (SBP)

The sub-bottom profiler (SBP) is an advanced acoustic technology for mapping the underlying layers
of the seabed, obtaining high-resolution profiles of (generally shallow) geological formations. This
device is widely used in geological, geophysical, geotechnical, and archaeological studies due to its
effectiveness in representing the structure and spatial distribution of submarine strata [Gutowski
et al., 2002] [Wu et al., 2021].

Often, when SBP are used, they are also referred to as chirp sub-bottom profilers, which operate
by emitting wide-band (see Appendix A for more details about this concept) acoustic signals, often
between 1 and 24 kHz. A chirp sounder scans a continuous range of frequencies using chirp signals
(signals whose frequency changes over time), from the lowest to the highest (see Figure B.1), unlike
traditional sensors, which use a single frequency value. This frequency sweep (chirp) produces a
controlled source signature, optimizing signal-to-noise ratio and image quality. Due to these features,
chirp profilers offer vertical resolution up to a decimeter, allowing a detailed analysis of the composition
and physical properties of underwater layers [Bull et al., 2005].

Sub-bottom sonar is based on principles involving acoustic impedance. Longitudinal waves are sent
through the sediments, generating reflected echoes at each soil interface encountered. These signals
are picked up by a transducer and stored, allowing successive geological layers of the seabed to be
visualized in real time, until the sound energy fades [Wu et al., 2021]. In addition to its application in
deep waters, sub-bottom sonar is also useful for detecting objects buried in shallow waters, such as
archaeological remains, allowing fine prospecting in shallow environments [Plets et al., 2009].
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(a)

(b)

Figure 2.5: (a) Illustration of how a Sub-Bottom Profiler works to provide the detection of different
underwater lithological layers. (b) Image taken by a SBP. Both from [Wu et al., 2021].

2.6.4 Side-scan sonar (SSS)

Side-Scan Sonar (SSS) was designed to obtain high-resolution images of the seabed, this time capturing
variations within this seabed rather than depth data. SSS sonar uses an acoustic backscattering
technique to represent the seabed substrate, interpreting differences in echo intensity as a function of
the nature and roughness of the surface ([Violante, 2020] [Sun et al., 2021].

SSS systems comprise two transducers installed on a towed probe, often called a tow-fish, each
emitting a beam of acoustic pulses directed to either side, port and starboard. The configuration of
the beams, narrow horizontally but wide vertically, enables them to cover the entire measurement
band along the sonar trajectory [Violante, 2020] [Huff, 1993]. However, a shadow effect persists below
the device, forming a narrow band (called nadir) with no data directly beneath the probe [Rajapan
et al., 2022].

Reflected sounds vary in intensity according to the composition of the seabed, with hard or uneven
substrates producing stronger echoes than relatively smooth or deeper surfaces. This contrast allows
for qualitative interpretation of the geological nature and micro-topography of the seabed [Sun et al.,
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2021] [Violante, 2020]. In some cases, higher frequencies, generally between 400 and 1200 kHz, are
preferred for the precise detection of objects, such as wrecks, for example, because they improve
image resolution by capturing mainly the surface layer of the marine substrate [Rajapan et al., 2022].

SSS devices are divided into two categories: ship-mounted systems, which use transducers installed
on the sides of the hull, and towed systems, which can be deployed at different heights. The Vessel-
mounted systems operate at lower frequencies (less than 10 kHz), offering wide coverage and greater
efficiency for large areas. In contrast, towed systems, when placed close to the seabed, offer higher
resolution for more detailed and higher frequency surveys, although their range is smaller [Wu et al.,
2021]. The quality of the images obtained also depends on the speed at which the device moves:
too high speed during sonar advance between two pulses compromises the system’s longitudinal
resolution. Consequently, a slow towing speed, generally around 0.2 m/s, is recommended to avoid
this phenomenon, especially for surveys requiring high precision [Huff, 1993].

(a)

(b)

Figure 2.6: Principle of operation of the Side-scan sonar (a) with its projection and different opening
angles (θH and θV ) and (b) is an example of a recovered image from the device. Both from [Wu et al.,

2021].

2.6.5 Synthetic aperture sonar (SAS)

SAS is an underwater imaging technology that surpasses the capabilities of traditional sonar systems
by offering centimeter resolution over distances of several hundred meters. Adapted from synthetic
aperture radar techniques, which use electromagnetic waves, SAS uses coherent integration of data
collected over several transmissions as the sonar moves along its trajectory [Wu et al., 2021] [Marx
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et al., 2000].

One of the characteristics of SAS is its ability to maintain a constant resolution, regardless of the
distance at which the image is captured. This “constant resolution” allows sharp images to be created
even at great depths, up to 400 meters, with typical resolutions varying between 10 and 30 cm [Wu
et al., 2021] [Hansen et al., 2011]. This technique differs from traditional sonar methods by coherently
combining data from multiple pings, resulting in high-quality imaging and improved cross-sectional
resolution compared to conventional beamforming systems [Marx et al., 2000]. Unlike conventional
SSS, SAS employs a series of multi-element hydrophones. This hybrid approach is the result of
advanced backscatter signal processing, enabling precise imaging in large areas [Hayes and Gough,
2009] [Hansen, 2013].

Figure 2.7: Illustration of how SAS works by combining data from several pings. From [Hansen, 2013]

In terms of frequency, SAS offers unique flexibility. High-frequency systems, such as the MUSCLE
developed by NURC (300 kHz), provide very high-resolution images, although ambiguities may
remain between mine-like objects and natural features. On the other hand, low-frequency SAS
(LF-SAS) systems are particularly effective in detecting buried objects, as low-frequency acoustic
waves penetrate deeper into the sediment, capturing internal details that are not visible with higher
frequencies [Pailhas et al., 2010] [Pan et al., 2016].
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(a)

(b)

Figure 2.8: Both images are based on SAS technology. (a) is a low-frequency image of a PVC
spherical shell (Ø: 50 cm) from [Pailhas et al., 2010], and (b) is a higher-resolution, high-frequency

image of a shipwreck at 50-m range from [Hansen, 2013].
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Chapter 3

Hardware: Ping2 sensor

3.1 Single-beam echo sounder (SBES)

The first echo sounders were used to detect, identify, and quantify fish or biomass in particular. The
first experimental trials date back to the 1920s, and the frequencies often used ranged from 12 to 200
kHz, depending on the depth of the water studied [Knudsen, 2009] [Lurton, 2002].

SBESs are, therefore, relatively simple sensors that can be used in a variety of situations. They consist
of a transmitting part and a receiving part. The distance measurement is initialized by sending a
sinusoidal signal through a power amplifier. This signal is pre-adapted to the target’s maximum depth.
Once this signal has been reflected, it is converted into an electrical signal. Throughout the process,
everything is carefully calculated and timed to avoid the signal from being received just before the
projector has finished transmitting. The electrical signal is then processed (to remove unwanted
ambient noise) and goes through a gain adjustment to better reflect the different amplitudes with
which the return echoes are received. The idea is to be able to amplify signals coming from afar,
while a signal that quickly returns to the sensor will be slightly erased.

The equation that allows us to calculate the distance that separates an object from the transducer is
the following [Bjørnø et al., 2017] :

d =
τc

2
, (3.1)

with :

• d is the height or length separating the sensor from the object (in m)

• τ is travel time (round trip) from the signal (in s)

• c is the average speed of sound in water (in m/s)

Having said this, the speed of sound in water is not a constant. In fact, it depends mainly on the
density and compressibility of the medium through which it propagates. In the oceans, this density is
influenced by static pressure (which increases with depth), temperature, and salinity. To represent this
dependence, the speed of sound c can be modeled as a function of three main parameters: temperature
T (in degrees Celsius), salinity S (in grams per kilogram or parts per thousand), and depth z (in
meters). A simplified relation allowing for the calculation of this speed is given by the following
equation [Jensen et al., 2011] :
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c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.01T )(S − 35) + 0.016z. (3.2)

As already mentioned, the application of such a transducer is varied but can depend on pulse length
and effective frequency. In addition, ping duration, ping shape, and beamwidth are parameters that
vary the shape of the recovered echo [Ferretti et al., 2015]. This also affects its ability to provide a rep-
resentation of the seabed. It is easy to see that several intrinsic transducer characteristics can also play
a role in object differentiation. Imagine a relatively long signal pulse that covers a distance greater than
that between two objects. The two objects would then be detected as a single unit [Bjørnø et al., 2017].

Figure 3.1 shows the trace left by the main lobe of an SBES beam. The sensor first receives the
strongest incident signal, followed by a backscatter from the seabed with a more moderate amplitude.
This amplitude enables observations to be made about the characteristics of the seabed, such as its
roughness or the nature of its coating. It should also be noted that the flatter and smoother the
seabed, the better the signal will be reflected.

Figure 3.1: Representation of the single beam with its various lobes from an SBES, including the
main lobe which reaches the seabed. From [Bjørnø et al., 2017]

3.2 Acoustic scattering

Imagine any object placed in free space and subjected to an acoustic wave. Real materials, whether
metals, plastics, or others, deform elastically when subjected to stress, even if this deformation is
minimal under the effect of low acoustic pressures [Burnett, 2015].

When the wave reaches the object, it generates an oscillating pressure on its surface, causing the
elastic waves to propagate within the object. These internal vibrations are then reflected in the
fluctuating pressure on the surrounding water, generating pressure waves that propagate through
the water. These waves are called scattered waves or echoes and their intensity varies according to
direction [Burnett, 2015].
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Figure 3.2: Schematic diagram from [Burnett, 2015] of an object immersed in water and struck by a
plane wave (red), causing elastic waves within the object (blue), which then re-radiate scattered

waves.

In order to visualize more precisely what an echo looks like, Figure 3.3 presents an example and
includes both recorded and simulated echoes.

(a)

(b)

Figure 3.3: (a) Example of the echo recorded by a BioSonar in a 3m*4m*2m tank. The echo comes
from the walls, bottom of the tank, and other surfaces. From Dmitrieva et al. [2017] (b) Echo of an

elastic spherical shell obtained with the Python code developed by Camilo A. Hurtado E. called
Acousticscattering.py (not published, private communication) and validated by comparison with the

work of Tesei et al. [2008].

To model the interaction between an acoustic wave and an object, early studies were conducted
by Rayleigh [1877], who established the theoretical basis for wave scattering. Later, Faran [1951]
extended this work to account for elastic spheres. More recently, Kargl et al. [2012] developed an
approach based on the scattering of a plane wave in free space. This approach is only valid for
simplification purposes in the case of continuous waves that are not characterized by a beginning
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and an end. When the receiver is positioned far enough from the object, the pressure of the reflected
wave can be expressed as follows:

pscat(r) = p0f(r̂, r̂i)
eikr

r
, (3.3)

where :

• p0 is the pressure of the incident wave.

• f(r̂, r̂i) is the scattering amplitude.

• r̂i and r̂ represent the directions of the incident and reflected waves, respectively.

• r is the distance between the object and the receiver.

• k is the wavenumber, which depends on the properties of the medium (here, water).

For simplicity, the frequency dependence of the scattering amplitude is omitted.

In sonar applications, monostatic backscattering is preferred, which occurs when we are interested
in the reflected wave that returns directly to the source (r̂ = −r̂i). By restricting to this case, the
scattering amplitude can be described using a single angular variable, denoted f(θ).

• For a cylindrical object, θ represents the angle relative to the cylinder’s axis, and the amplitude
does not depend on the azimuthal angle.

• For a spherical object, the scattering amplitude is independent of both the polar and azimuthal
angles, further simplifying the analysis.

The scattering amplitude is often expressed using a dimensionless form function F (θ):

f(θ) =
a

2
F (θ), (3.4)

where a is the radius of the object (sphere or cylinder) [Anderson, 1950].

The differential scattering cross-section (measure of an object’s efficiency in diffusing, reflecting,
or absorbing an incident acoustic wave, depending on its size, shape, and the properties of the
surrounding medium [Urick, 1983]) is given by :

σ = |f(θ)|2 = a2

4
|F (θ)|2 = πa2

4π
|F (θ)|2. (3.5)

The form function F (θ) describes how the object scatters the acoustic energy as a function of angle
and frequency. This allows to connect this expression to the concept of Target Strength (TS).

The vibrations of the object and the resulting scattered waves depend on changes in the frequency
of the incident wave, or on variations in the angle of incidence. When a plane wave strikes the
object, the intensity of the wave returned in the direction of the source is determined by the TS. The
equation most commonly used to measure the expression of the strength of an echo in the far field for
a monostatic configuration in dB is the following [Burnett, 2015]:

TS(f, θ) = lim
r→∞

20 log10

(
r|p(r)|
r0p0

)
(3.6)

where :
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• f : frequency of the incident wave.

• θ : aspect angle of the incident acoustic wave (often the azimuthal angle, which is a horizontal
angle relative to the vertical to the ocean bottom).

• p(r) : pressure of the scattered wave.

• || : indicates magnitude.

• r : position vector from the object to the observer (where TS is measured).

• r : magnitude of the position vector r.

• r0 : reference distance.

• p0 : reference pressure.

This introduction to TS is important because it is particularly used in the equation for active sonar
detection.

3.2.1 Active sonar equation

There are two types of sonar: active and passive. Passive sonars include only a receiver and no
transmitter. The target will only be detected by its ability to emit sound. In active sonar, both
a transmitter and a receiver are employed. The system operates on the principle of echolocation
(this principle is also used by bats and dolphins) [Ainslie, 2010]. The active sonar equation is used
to determine if an active sonar system can detect an echo returned by a target in the underwater
environment. The sonar equation for a monostatic configuration (where the transmitter and receiver
are co-located) is [Bjørnø et al., 2017]:

SL− 2TL+ TS −NL+DI ≥ DT (3.7)

where:

• SL: Source Level (in dB) — the intensity of the emitted sonar signal.

• TL: Transmission Loss (in dB) — the loss of signal intensity due to propagation (both
outbound and return paths).

• TS: Target Strength (in dB) — the reflective capability of the target.

• NL: Noise Level (in dB) — the ambient noise level in the environment.

• DI: Directivity Index (in dB) — the gain from the sonar receiver’s ability to focus on the
direction of the incoming echo.

• DT : Detection Threshold (in dB) — the minimum signal level (power of the acoustic signal
received after reflecting off a target) required for detection.

For example :

Suppose a sonar system emits a signal with a source level of 200 dB, experiences a transmission loss
of 100 dB (which is the round-trip), with the target strength at 20 dB, the noise level at 40 dB, and
the directivity index at 10 dB. Finally, the detection threshold is set at 5 dB.

The sonar equation (3.7) becomes:
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200− 100 + 20− 40 + 10 ≥ 5 (3.8)

90 ≥ 5

In this case, detection is possible because the signal level is much higher than the detection threshold.

3.3 Introduction to the Ping2 sensor

The Ping2 is an altimeter and single-beam echo sounder (as described in Section 3.1) manufactured
by Blue Robotics Inc. This device is a multipurpose underwater sensor that can detect objects up to
100 meters deep. It is a small, compact sensor that can basically be mounted on ROVs and USVs. In
most cases, it is used to determine the distance between the surface of the water and the seabed, as
well as to detect and avoid obstacles.

3.4 Technical details

The Ping2 operates at a center frequency of 115 kHz and exhibits a -3 dB beam width of 25 degrees.
The use of this precise frequency is justified by the fact that it deviates from the usual frequencies
found in similar devices. This sensor features a piezoelectric transducer capable of sending an acoustic
signal and listening when it returns. Once the response signal has been retrieved, it is possible to
view in real time the full echo response from the target, which is plotted directly in an open source
application supplied by the manufacturer called "Ping Viewer" (and presented in Section 3.5.1). In
addition, it is possible to dialogue with the sensor using a binary message format called the "Ping
protocol". This protocol offers the possibility of using customized Python libraries to supply the
required data without having to go through the dedicated application.

For its part, the device integrates a relatively powerful "bottom-tracking" algorithm, capable of
differentiating between numerous entities by comparing the intensity of the measured signal. For
example, the sensor can tell the difference between a seabed a few dozen meters below the surface
and a fish passing just below it. In this way, it can differentiate between several echoes.

In terms of dimensions, the sensor is housed in a case with a top diameter of 50 mm and a bottom
diameter of 47 mm, for a total height of 41 mm (see Figure 3.4). The upper part is formed by an
anodized aluminum-reinforced housing.
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(a)

(b)

Figure 3.4: In (a), presentation of the 2D plans and measurements of the sensor and (b) is a picture
of the Ping2. Both from the official website of the manufacturer [Robotics, 2024].

The entire device is powered by a voltage of 4.5 to 5.5 V and features simple 4-wire 24 AWG (0.5106
mm) wiring for both input current, ground connection, and two other wires, Rx (in) and Tx (out).
All these wires are wrapped in an 875 mm long, 7 m long waterproof sheath and connected to a serial
adapter also offered and sold by Blue Robotics. It is called the "BLUART USB to Serial and RS485
Adapter" and is an open-source circuit board that enables communication via USB with devices using
serial UART or RS485, offering various ways of communication, depending on the protocol used.

3.5 Data acquisition

Data acquisition involves measuring a physical quantity (such as pressure) as a voltage, which is then
converted into a digital signal. When using Ping2, there are two main ways to retrieve data:

• via the Ping Viewer application

• via the Ping protocol

Both of these solutions to retrieve data all send the same types of request and configuration commands
directly to the sensor. The results obtained using either method are the same, although the acquisition
format changes. The recovery process for the transducer is the same, and is roughly summarized in
Figure B.3 in the Appendix.
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3.5.1 Ping Viewer application

Ping Viewer is a graphical user interface to connect, configure, and save data via Ping2. This interface
is divided into 4 main compartments. The first is the distance display, the second is the distance axis,
the third is the return plot, and finally the last is the waterfall. These 4 aspects are shown in Figure
3.5

Figure 3.5: Ping Viewer interface for a measured distance of 0.31 m and a confidence of 100%. (1) is
the distance reading, (2) is the distance axis (3) is the mirrored return plot and (4) is the plot of the

samples called the waterfall.

The distance indicator displays the distance measured to the target based on the most recent reading
taken by the transducer. Immediately below, the confidence level of the last sample is indicated in
percent and is color-coded. Green indicates 100% confidence (maximum confidence), yellow 50%
and red 0% (low confidence). Confidence increases with measurement consistency. It is not a notion
based solely on the accuracy of the measured distance. The confidence estimation is determined by
comparing the strength of the echo reflected from the bottom (return echo) with the level of ambient
background noise (ambient noise floor).

The distance axis is shown on the right-hand side of Figure 3.5. It indicates the distance between
the detected interface and the Ping2 sensor. A slight red arrow also locates the most likely position
of the surface, which returns the strongest signals. The scale of this axis is automatically adjusted
according to the current scanning range of Ping2.

The return graph shows the signal strength as a function of distance. It is a simple plot that shows
the intensity of the reflected signal. Stronger signals leave much more pronounced traces. At the
top of Figure 3.5, you can see very pronounced traces. These traces can be found throughout all
distance measurements (as long as we define the start of the measurement at distance 0) and do
not represent anything more than the vibratory signal within the device. In fact, when the Ping
device emits the acoustic pulse, it continues to vibrate, like a bell ringing, and this residual energy is
captured as a return signal until it dissipates. This phenomenon is comparable to multiple reflec-
tions within the transducer, even before the signal leaves the transmitter enclosure. This part of
the signal is therefore defined as the ringing signal or can also be defined asHi(ω) from Equation (2.21).

Finally, the waterfall graph is a display that occupies the main part of the application window. It
plots consecutive profile samples (the distance is on the vertical axis, and the color represents the
intensity of the signal). The horizontal axis represents the time, although the interval between each
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measurement is not automatically displayed. In concrete terms, each new ping taken appears on the
right edge of the graph, while older data gradually move to the left.

The home screen also offers the ability to configure and change several key parameters: the number
of pings emitted per second (ping/s), the speed of sound (m/s), an automatic or adjustable gain
value, a scan start distance and a scan end distance. There is no need to go into detail about these
parameters, as they’re the same as those presented in the following Ping protocol presentation.

3.5.2 Ping protocol

The second way of communicating with the transducer, and surely the one most used for data
acquisition in this thesis, is called the Ping protocol. This protocol lists a set of messages that can be
requested directly in a Python script to retrieve data performed under the desired conditions.

Customizable commands can be used to request or set the value of a variable. Thus, there are two
main commands:

• The set() command: can be used to switch the device to configurable/automatic mode, or to
set other parameters such as sound speed, scan length, or gain value.

• The get() command : allows the user to retrieve crucial information such as the distance
measured, the confidence with which this distance is measured, and many other variables (such
as the Profile_data which is similar to the full waveform).

When it comes to retrieving data, the get() command is one of the most important. Ping2 developers
have also collected information in more general messages such as: "myPing.get_profile()". This
function, directly recognizable after downloading the manufacturer’s library (Ping1D), retrieves the
following information in a single operation:
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Table 3.1: Parameter sets that can be retrieved using the "myPing.get_profile()" function provided
by the Ping1D Python library.

Name Description Units

Distance
The current return distance determined
for the most recent acoustic measure-
ment.

mm

Confidence Confidence in the most recent range
measurement. %

Transmit_duration The acoustic pulse length during acous-
tic transmission/activation. µs

Ping_number The pulse/measurement count since
boot. /

Scan_start The beginning of the scan region in mm
from the transducer. mm

Scan_length The length of the scan region. mm

Gain_setting The current gain setting. 0=0.6; 1=1.8;
2=5.5; 3=12.9; 4=30.2; 5=66.1; 6=144 /

Profile_data_length The length of the proceeding vector
field, always equal to 200 /

Profile_data

An array of return strength measure-
ments taken at regular intervals across
the scan region. The first element is the
closest measurement to the sensor, and
the last element is the farthest measure-
ment in the scanned range.

/

An example of a custom Python code used to perform the experimental measurements is provided
in the Appendix C. This code allows retrieving all the useful information in a ".csv" format. Using
such a code also allows to directly decode the 8-bit data provided by the sensor into a set of integer
numbers (in the form of a list) which can then be displayed graphically. This is the Profile_data
shown in Table 3.1.

3.6 Data manipulation

Once the data are recovered, the list of the return signal strength values can be formatted. Un-
derstanding the nature of these data is essential in the case of the Ping2 sensor, as it faces certain
technical limitations that will be discussed in the following section (see Section 3.7).

Before making the graphs of our return values. The x- and y-axes have to be specified.

• Measurement of the return strength (Y-axis) :

Return strength is a variable set directly by the manufacturer as the signal amplitude over an interval
from 0 to 255 (no units and no decimals). This value is set by hardware and cannot be changed by
the user.

• Time interval (X-axis) :

The time interval must be adjusted according to each type of profile because it depends on a number
of parameters, such as the length of the scan or the speed of sound in water. This interval can be
calculated as follows:
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∆ts =
scan_length

profile_data_length · vs
, (3.9)

with vs, the speed of sound (mm/s), the profile_data_length that corresponds to the vector field of
the measurement, and finally, the scan_length that corresponds to the length of the scan (can be set
depending on the part of the signal we are interested in).

Figure 3.6 helps to better understand how these different parameters come into play and influence
the list of return strength values of the received signal. The figure therefore refers to a profile for
an estimated distance. The notion of scan_start and scan_end are well represented to understand
how the scan_length is constructed (these 3 variables can therefore be controlled by the user). The
sensor will always manage to dissect the scan_length into a vector of 200 samples because this value
is locked by the hardware part of the data recovery command (although in the case of Figure 3.6 it is
equal to 24 to simplify the understanding of the image).

Figure 3.6: Explanatory graph of the different notions involved in shaping the distance profile values
from [BlueRobotics Community, 2023].

Figure 3.7 allows visualization of the graph obtained after defining the different axes. The graph is
separated into two parts (the first in red and the second in green). The first value to reach saturation
(255) in the second part of the signal is the one corresponding to the maximum of the return force
found on the path traveled by the signal. The distance from the surface causing this return strength
is the one shown to the user. A straightforward step to verify the accuracy of the sensor’s distance
estimation involves recalculating the distance using known parameters, such as the speed of sound in
water and the time taken by the sensor to detect the reflected surface (saturation peak). For this case,
the time to reach the saturation peak is approximately t = 0.32ms. Given that the speed of sound in
water for this profile is c = 1400m/s, the recalculated distance can be obtained using the formula:

d = c · t

Substituting the values, it becomes:

d = 1400 · 0.32 = 448mm.

This result closely matches the sensor’s estimated distance of 445mm, confirming the consistency of
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the measurement. The use of a sound speed of 1400 m/s in water is not an arbitrary choice. Indeed,
it is only when this value is used during the sensor’s measurements that the distance estimated by
the sensor matches the distance manually measured with a tape measure. This means that 1400 m/s
is the sound speed in water that provides accurate estimates under these conditions during this thesis.
This value can be explained by a relatively cold water temperature (around 10 degrees), a very low
salinity since the water used is tap water, and also by the fact that the transducer is working at
shallow depths.

Figure 3.7: Graph of the profile data for a distance of 445 mm with a speed of sound in the water of
1400 m/s, a gain value of 5 and a scan_length of 1000 mm. Red part is the ringing signal and green
part is the return echo information. The highest value, surrounded by a little blue circle, corresponds

to the reflection of the detected surface.

3.7 Notes and limitations

The Ping2 sensor provides profile data derived from measurements taken by its Analog-to-Digital
Converter (ADC). However, the information available and transmitted by the sensor is not the raw
data collected by the ADC. Before being transmitted, these data undergo processing steps that include
filtering, gain adjustments, and the addition of an offset (to ensure that any background noise in the
data is appropriately adjusted or offset, so that the detected signal accurately represents the echo
returned from the target). It is not possible to directly access the raw ADC values, which initially mea-
sure the intensity of the returned acoustic echoes. An other important point to note is that the ADC
samples are at a much higher frequency than the rate at which the profile data are transmitted. This
discrepancy creates technical constraints: on one hand, the bandwidth of the serial communication
channel is too limited to transmit ADC data in real time at full resolution. On the other hand, the mi-
crocontroller’s memory is insufficient to store all the data from a complete high-resolution transmission.

The sensor measures the amplitude of the reflected signal, but this measurement is adjusted by
internal algorithms and does not represent the exact power of the signal reflected by the target.
That is why the measurements provided by the sensor do not allow a direct measurement of the
acoustic backscattering. However, it is possible to extract data from the processed profiles (these
are the ".csv" files that contain the profile data). The information transmitted by the sensor is
specifically designed to represent the response strength of emitted acoustic signals and not to provide
raw acoustic measurements. In practice, the sensor captures the vibrations of the transducer via the
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ADC, which are then processed to be transformed into a single measurement per profile point. The
intensity data returned by the sensor are somewhat based on voltage measurements. However, no
calibrated conversion is available to relate these values to a precise physical unit (such as pressure).
This limitation comes from the use of custom transducers and the complexity of the amplification
circuits, which makes the theoretical estimates unreliable.

The part that returns the strongest signal will prevail. In most measurements taken, the "target
tracking" algorithm aims to target the surface or object placed in front of it. Generally, the smoother
the surface, the better it will reflect the incident wave. In all cases, the device will adjust the signal
to the target and always return a saturated peak, reaching the maximum return strength value
(255). This capability also has its drawbacks, as the entire signal is scaled to the distance it was
reflected from, applying an automatic gain that is difficult to recover (in addition to the user-applied
gain). This aspect of Ping2 will be thoroughly discussed in Section 4.1.1. This automatic setting
complicates the comparison between measurements, as the amplitude of the recovered signal is not
really proportional to the distance at which a surface is detected. Currently, the selling company has
not developed any support to recover the raw, unprocessed values.

Finally, temperature compensation is not integrated into the sensor. Therefore, the value of the
speed of sound propagation in water is not accurate. However, by making our own distance estimates
directly from the response profiles, it appears that there is a discrepancy between the measured
distances and the estimated distances. We therefore agreed that a sound speed in water of 1400
m/s was the best estimate of reality, as said previously. In addition to this limitation related to the
speed of sound in water, there is the duration of transmission of the signal, which is always fixed
by the transducer at a value of 26 µs and cannot be directly changed by the user. This reduces the
resolution of the signal, as a higher value would have allowed better visualization of the variations
in the received signal. This is because a longer signal duration increases the signal-to-noise ratio,
making it easier to distinguish the useful signal from ambient noise.
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Chapter 4

Methodology

4.1 Laboratory experiments

This section reports on laboratory experiments and is divided into 3 parts. The first part is dedicated
to acquisition of the gain function, the second to the notion of a perfect acoustic reflector (PAR),
which is important in the sensor calibration stage, and finally, the last section is dedicated to the
recovery of scenarios involving different experimental configurations. In all of the scenarios presented
here, the same infrastructure has been used and all the measurements in this section were taken
between October 14 and December 13, 2024, in the GERU Hall at the Université catholique de
Louvain, Belgium.

The Ping2 single-beam echo sounder (see Section 3.3) is mounted on a mechanical arm with three-
dimensional mobility (see Figure 4.1). The mechanical arm is set in motion by three MAC800
motors, controlled remotely from a computer with a Matlab script. This allows the arm to move
freely along the x, y, and z axes. The x-y-z positioning system is adjustable, allowing its position
to be set relatively and moves at a speed of 0.15 m/s. At the beginning and end of the movement,
there is a phase of acceleration and deceleration. The exact value of the acceleration speed is not known.

The transducer, positioned so as to face the bottom, is immersed in a one-cubic-meter plastic tank
(high-density polyethylene (HDPE)) reinforced by a metal skeleton and mounted on a wooden pallet
to increase its stability. The bottom of the tank is padded with Plexiglas plates to make the bottom of
the tank smoother and more uniform. The echo sounder provided numerous pings that were captured
using the configuration just described, with the bottom at different distances from the transducer
and the gain also set to avoid over-saturated signals as much as possible.

For each ping, measurements were meticulously taken to ensure that the distance was always greater
than that required to remain in a far-field configuration. Given a transducer diameter of 50 mm and a
Ping2 wavelength (λ = v

f
= 1400m/s

115 kHz ≈ 0.0122 m) at a maximum water sound velocity of v = 1400m/s,
the far-field distance is reached at approximately:

Far-field distance =
D2

λ
≈ (50mm)2

λ
≈ 20.54 cm,

where D is the diameter of the transducer and λ is the wavelength of the sound beam. In any case,
this distance will never be approached, as the transducer’s minimum effective detection distance is 30
cm. Below this, the information returned is not accurate.
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(a) (b)

Figure 4.1: (a) is the experimental setup involving the mechanical arm and the one-cubic-meter tank.
(b) is the Ping 2 sensor mounted at the end of the arm and looking straight down at the tank bottom.

In order to retrieve the raw data from the transmitter/receiver via the Ping protocol or the Ping
Viewer application, the transducer is connected to a laptop with the following configuration: Intel(R)
Core(TM) i7-7700HQ CPU, 2.80GHz, 2.81 GHz, 16 GB RAM. The connection between the two
components is ensured by a USB to TTL serial adapter also produced by Blue Robotics.

4.1.1 Gain function and theoretical background

The gain function, denoted as g(t), plays an important role in modeling the response of the transducer
as a function of time t. This function provides a concrete understanding of how the gain evolves and
reflects the sensitivity of the transducer to a given excitation. Various cases can be considered for
g(t), each corresponding to a specific behavior, and a non-exhaustive list is provided below:

• Constant case: when g(t) = a, the gain is constant and does not depend on time. This
represents a stable system where the response remains the same regardless of the duration.

• Linear case: when g(t) = a · t, the gain increases proportionally with time as the amplification
increases progressively.

• Nonlinear case: when g(t) = a · tb, the gain depends non-linearly on time. Growth can
be faster depending on the value of the factor b (b > 1) or slower (0 < b < 1) than linear
progression.

• Exponential case: when g(t) = et, the gain follows exponential growth. In this case, the
response becomes rapidly very large over time.
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Thus, these few forms presented of g(t) provide some flexibility for understanding and interpreting
the collected data.

The gain function applied to the Ping2 transducer and echo sounder is quite difficult to retrieve,
as these data are not provided directly by the manufacturer. Given that only the experimental
measurements are available, it can be reconstructed using an inverse modeling approach. It is possible
to define the term "inverse modeling" as follows: it is a process of extracting information from
measurements of the physical quantities associated with the acoustic field. It should be noted that
this model may be an inaccurate representation of a real scenario, especially since the experimental
data itself may be distorted by noise [Bjørnø et al., 2017]. It is important to clarify that even though,
in some ways, the data profiles contain information about the physical processes that govern the
propagation of the acoustic signal, these data are only stored as digital amplitudes, which do not
refer directly to well-known physical units (see Section 3.7).

To recover the gain applied to the signal, start with this equation:

sg(t) = s(t) · g(t), (4.1)

where, sg(t) is the signal received by the transducer, s(t) is the ideal raw signal received by the echo
sounder, g(t) is the applied gain.

To experimentally attempt to recover the gain applied to the entire data set, a relatively large distance
interval was set. This was arbitrarily chosen, while avoiding excessively short lengths to limit possible
reflections due to the size of the water tank used. Thus, measurements were taken over a distance range
of 400 to 700 mm. These distances are those that separate the sensor head from the bottom of the tank.

It is necessary to specify that these measurements were taken manually using a measuring tape and
are not those returned by the transducer (429 to 715 mm). Indeed, because of the sensor’s geometry,
it seems that there is a systematic offset from 15 to 30 millimeters, suggesting that the distance is
not calculated from the emitting surface but from a virtual origin within the sensor. This offset can
vary according to the speed of sound in water, although the one and only value for sound in water
used during the measurements was deliberately set at 1400 m/s.

In the case of Ping2, at least two types of gain come into play. The first is a gain that can be
configured manually and can take six different values. These values are listed in Table 3.1. The
second is an automatic gain, independent of the experimenter’s control, which relies on an algorithmic
process to detect the target.

The following steps explain the method used to try to recover the applied function of gain :

• Begin by defining a reference signal, which should be the shortest distance measured by the
sensor (429 mm), from a set of distances.

• Select any other signal of interest.

• Identify, for both signals, a notable and recurring point in the upper part of the ringing signal.
This notable point will serve as a threshold. Two thresholds are therefore defined, one for each
of our signals (reference signal and signal of interest).

• For each of the two signals, retrieve only the values that exceed their respective threshold and
keep only the values located in the part of the ringing signal.
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• Divide the filtered values of the signal of interest by the filtered values of the reference signal
from the previous step. This step allows to obtain the ratio between these two signals. From
Equation (4.1):

sg1(t)

sg2(t)
=
s1(t) · g1(t)
s2(t) · g2(t)

=
g1(t)

g2(t)
with s1(t) = s2(t)

• Once the ratio of these values is obtained, fit a linear model (assuming that the gain follows a
linear adjustment over time).

All the values that will be presented were obtained using the Ping communication protocol, carefully
ensuring that the user-adjustable gain was locked at 5. The scan length is set to its minimum value
of 1000 mm to provide the best possible resolution at this distance. The speed of sound in water is
set to 1400 m/s. Furthermore, only the values that returned a confidence of 100% were selected to
represent the interval.

4.1.2 Concept of the perfect acoustic reflector (PAR)

In order to retrieve the full-wave sonar equation discussed in section 2.5, it is important to recover
certain transfer functions specific to sonar. These transfer functions are denoted as Hi(ω), H(ω), and
Hs(ω), following Equation (2.21). These functions can be determined during the calibration step of
the transmitting device on what is called a Perfect Electromagnetic Conductor (PEC) [Lopera et al.,
2007] [Sluÿters et al., 2024]. In the specific case of acoustics, the PEC is converted to a PAR.

When an acoustic wave passes from a medium with a high sound speed, such as water, to a medium
where the sound speed is significantly lower, such as air, the interface between these two media acts
almost entirely as a near-perfect acoustic reflector. This phenomenon is explained by the marked
differences between the acoustic impedance of the two media, with the specific acoustic impedance
given by the following equation [Pierce, 2019] :

Z =
ρc

cos θ
,

where ρ represents the density, c the speed of sound and θ the angle of incidence of the wave.

For the air-water interface, the ratios

(ρc)air

(ρc)water
≈ 0.0003 and

(
cair

cwater

)2

≈ 0.05

show that the impedance of air is negligible compared to that of water. The interface thus behaves as
a pressure-release surface, reflecting nearly all of the incoming acoustic energy.

According to Brekhovskikh and Lysanov [2006], at normal incidence (θ = 0), the reflection coefficient
V in Equation (2.15) approaches −1, which means that the reflected wave is almost equal in amplitude
but opposite in phase to the incident wave. In fact, taking the values ρ = 1000 kg/m3, c = 1400m/s,
ρ1 = 1.2 kg/m3, and c1 = 343m/s in Equation (2.15) and considering that the wave strikes the surface
normally (i.e., the angle to the normal is 0), the value of the reflection coefficient is R ≈ −0.9994.
This approximation applies not only to the air-water interface, but also to any system where the ρc
value of the second medium is negligible compared to that of the first. In contrast, when a wave is
incident from air onto water, the acoustic properties of the interface cause a significant increase in
the acoustic pressure in the transmitted medium.
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To retrieve valid data for calibration in the PAR configuration, the same experimental setup as the
one of the gain function acquisition was used with one difference. In fact, the transducer is no longer
positioned to face the bottom of the tank, but rather to face upward toward the top of the tank,
namely the water-air interface (as shown in Figure 4.2).

Figure 4.2: Experimental setup for collecting profile data at different distances with the sensor facing
upwards towards the PAR surface.

Several distance profiles were recovered, all carefully performed with a user-adjustable gain of 5, a
scan length locked at its minimal value of 1000 mm. The use of a gain of 5 allows for visualization of
the entire signal without too much saturation compared to lower gain values.

4.1.3 B-scan scenarios

For this part of the experiment, B-scans of several configurations were conducted. The main goal was
to display different types of reflected surfaces, varying sediment heights, and also incorporate the
concept of a target.

A B-scan in GPR involves moving the antenna along a straight path over the surface of interest while
recording the reflected signals at different points. The data collected at each position is called an
A-scan, representing the intensity of the reflected signal at that specific point. In the case of this
experiment, the B-scan also involves a sonar sensor that moves along a trajectory to recover the echo
at different positions. The A-scan, on the other hand, is comparable to a single signal studied as a
function of time. The Ping Viewer application emphasizes temporality and evolution, while the B-scan
focuses on a fixed spatial view. In a way, Ping Viewer offers a dynamic, time-evolving perspective,
while the B-scan provides a snapshot of the spatial distribution at a given moment. Therefore, for
the remainder of this study, the B-scan is preferred.
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To perform the B-scans, the Matlab script controlling the movement of the mechanical arm was
modified to create 80 cm long segments all at an initial height of 45 cm. The y- and z- coordinates
were fixed, allowing movement only along the x-axis. This movement always occurred from right to
left (that is, in the negative x-direction, see Figure 4.1).

B-scan measurements are taken in one go, including the acceleration and deceleration phases of the
movement for a total of 90 pings. The sensor does not stop at each distance interval, as this would
require a significant amount of time for the various tested scenarios, as well as for other reasons
that will be stated in the discussion chapter. However, this motion is not uniform and includes both
acceleration at the beginning and deceleration at the end of the path. These phases have an impact
on the measurements because they do not allow to recover the time interval between each of the 90
pings taken over the 80 cm traveled. Thus, ping 1 corresponds to the measurement taken for x = 0
cm and ping 90 corresponds to a distance of x = 80 cm. However, since the time elapsed between
each ping is not the same, a decision was made to present the results based on the ping rather than
the distance traveled.

For the various configurations selected, the first is the standard configuration described in Section
4.1. Then sand was added (see the technical details of the sand in Figure B.2). This sand was added
at different heights, starting with 1.5 cm without including a target. Next, different targets were
used and sand was added from 1.5 to 2.5 cm and finally 4 cm high (still including the Plexiglas
layer). The final height was used to almost completely cover the target. The two types of targets
used are described in Figure 4.3. It consists of a concrete brick, a stone with irregular sides, and a
3D-printed mine. This mine resembles a Manta model, with its shape recreated using polylactic acid
(PLA) filaments on a PRUSA i3 MK3 printer (see Figure 4.4), and its design is inspired by a related
document [Chu, 2009]. Unfortunately, the 3D printed Manta mine could not be used because its
density was slightly too low to prevent it from sinking, even though it was filled with various types of
ballast.

Figure 4.3: Targets used for the B-scans sections. On the left, an irregularly-shaped rock
approximately 3.5 centimeters high and 7 centimeters long, in the middle, a 4*10*12 cm concrete

brick, and on the right, a 3D-printed Manta mine with 4 centimeters high, with a large diameter of
10 centimeters and a small diameter of 4 centimeters.
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Figure 4.4: Photo taken during the 3D printing of a Manta mine on a PRUSA i3 MK3 printer.

Pictures showing some of the configurations used are shown in Figure 4.5. When targets were used,
they were always placed directly below the movement path of the sonar to facilitate detection. To
avoid any intrinsic variation in the results obtained, the sensor values are locked and are the same for
all measurements. The value of the speed of sound in water is 1400 m/s, the scan length is adjusted
to its minimum value of 1000 mm, and the user-adjustable gain is locked at 5, to provide data that
are consistent with and comparable to that provided in the previous sections.
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(a) (b)

(c) (d)

Figure 4.5: (a) Experimental setup including a 1.5 cm layer of sand. (b) Insertion of a concrete block
as a target, still with 1.5 cm of sand. (c) Concrete brick embedded in 2.5 cm of sand with a rock

placed on the sand’s surface. (d) Concrete block almost buried under 4 cm of sand.

4.2 K-wave numerical simulations (MatLab)

The k-wave simulation package is an open source toolbox for simulating the propagation of ultra-
sound and acoustic waves in realistic environments. These time-domain simulations are based on a
pseudospectral k-space method that supports various sources and detection surfaces. However, this
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package is limited because it does not allow the inclusion of diverse targets. Only so do layers with
different parameters. The k-wave package has a well-detailed user guide, part of which serves as an
inspiration for this section [Treeby and Cox, 2024].

An acoustic wave traveling through a pressurized medium generates numerous changes within it.
These different variations (in pressure, velocity, or any other physical parameter) can be simplified by
a series of first-order differential equations using the k-wave library. The simulation package therefore
offers various functions capable of solving these series of equations in different dimensions, namely :

• kspaceFirstOrfer1D

• kspaceFirstOrder2D

• kspaceFirstOrder3D

These functions are relatively simple to use and allow one to introduce a very special notion called
perfectly matched layer, or PML. This layer roughly absorbs the acoustic waves that arrive at the
edge of the simulation domain and can therefore simulate an infinite domain beyond its limits.

There are many useful methods for determining the solution of differential equations. These methods
depend on quite a few factors, such as the size of the computational domain and the properties of
the medium. The method used in this case is the pseudospectral (PS) method, which is a numerical
technique that solves differential equations by decomposing more complicated solutions into series
of smooth global functions. This results in greater precision and faster reduction in the error rate
[Fornberg and Sloan, 1994]. They also solve the problem of memory capacity and the number of
time steps required in well-known simulations using finite-difference methods. Nevertheless, the
simulations remain of a relatively high order of magnitude and require substantial resources. This is
why optimized CPU codes for compressional waves were used to reduce the computation time by a
factor of 6 to 10.

Note that these first-order functions presented previously are only valid for compressional waves, and
two other functions are interesting to use when one wishes to add an additional component, namely,
a solid layer now involving shear waves in addition to compression waves. These two functions are :

• pstdElastic2D

• pstdElastic3D

The Pseudo-Spectral Time Domain (PSTD) functions require the same configurations as the first-order
functions (kspaceFirstOrder1D, kspaceFirstOrder2D and kspaceFirstOrder3D), with a few differences.
One of the main differences is that the optimized CPU codes are not applicable for shear waves,
limiting the use of these functions to smaller simulations. For this reason, only first-order functions
are described in the following.

Before any simulation is carried out, four very important objects need to be defined :

• The computation grid

• The medium properties

• The acoustic source

• The sensor
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Simulations use a computational grid. For each dimension (x, y, z), information such as the number
of points (Nx, Ny, Nz) and the spacing between them (dx, dy, dz) are specified. The choice of these
parameters depends on the size of the domain and the maximum frequency to be modeled. The spatial
gradient calculations make strong use of the fast Fourier transform (FFT). The time to compute each
FFT can be minimized by choosing the total number of grid points in each direction to be a power of
two or to have small prime factors.

In addition, the desired grid size must be increased to include the PML. The use of a PML is of
great interest when modeling the behavior of waves in free space. In practice, however, it is more
complicated. In fact, using FFTs in the process of calculating spatial gradients implies that the wave
field is periodic. This behavior suggests that when a wave disappears as it passes one side of the
simulation, it reappears on the other side. It is like imagining a train disappearing into a tunnel on
the right of our field of vision, only to emerge immediately to the left of another tunnel on the other side.

To represent this infinite propagation field, increasing the number of grid points in the simulation
would be necessary, but this would have a heavy impact on the machine’s computing time. To remedy
this, the PML is integrated as an absorbing limit, which, once touched, allows the wave to disappear
without leaving traces because of anisotropic absorption. This PML can also be included externally,
but this is a resource-intensive option.

Implementing such a layer requires two conditions:

• An absorption coefficient high enough to withstand large waves.

• The layer should not reflect waves when touched.

This layer can be configured by assigning a well-defined thickness (units of grid points) or by defining
the absorption parameter (units of Nepers · s−1).

The medium is defined by setting physical properties such as the speed of sound and the density of the
material. These properties can be constant (homogeneous medium) or spatially varying (heterogeneous
medium). For example, a varying speed of sound can be specified to model interfaces or layers with
different acoustic properties.

Acoustic sources are defined by specifying an initial pressure or introducing a particle velocity source.
For example, in some simulations, a source can be modeled as an initial pressure distribution shaped
like a disk, with characteristics such as the position, radius, and amplitude of the source being defined.
This is specified in terms of both acoustic pressure and velocity.

The sensors are modeled by indicating the positions on the grid where the pressure or velocity values
of the particles are recorded. The choice of sensor location can significantly influence the accuracy
of recorded data and, consequently, the overall quality of simulation results. Note that the library
does not propose a monostatic source and receiver position by default, but it is possible to align their
positioning to create a similar structure.

Concerning the numerical model stability, it is also possible to control the precision and perfor-
mance of the simulation by adjusting key parameters. One of the most critical parameters is the
Courant-Friedrichs-Lewy (CFL) number, which determines the time step size based on the maximum
propagation speed in the medium. The CFL number is calculated as:

CFL =
c0 ·∆t
∆x

,
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where c0 is the speed of sound, ∆t is the time step and ∆x is the spatial resolution.

Maintaining an appropriate CFL number ensures the stability of the numerical model, as a time step
too large can lead to unstable simulations where numerical errors grow exponentially and explode
[De Moura and Kubrusly, 2013].

Thus, the stability and accuracy of the model depend on three main factors:

• The discrete equations must be consistent with the equations governing the physical phenomena.

• The numerical model must be stable, which means that numerical errors should not amplify
over time.

• The numerical solution should be accurate, converging to the continuous solution as the spatial
and temporal discretizations become finer.

By selecting the CFL number, it is possible to balance computational performance with the need for
accurate and stable results. For instance, reducing the time step size (i.e., lowering the CFL number)
may improve stability but increase computational cost. This is why a certain balance must be struck
when simulating a new situation.

4.2.1 Green’s function

The purpose of this section is to explain the methodology adopted to simulate results that can later
be used with the experimentally collected data to get the transfer functions of the sensor and attempt
to remove the effects caused by the sonar-hydrophone.

Referring to Section 2.5, to recover the transfer functions of our sonar-hydrophone-multilayered
medium system, it is precisely important to determine the Green’s function for the 3D elastic wave
propagation in a multilayered medium. "Green’s function is a powerful mathematical tool for solving
all kinds of differential equation problem. It was first introduced by George Green in 1828 and it
enables to understand how a linear system responds to a point perturbation signal (Dirac’s mass) in
a specific mathematical context" [Hoernig, 2010].

However, after much research in the literature, the analytical determination of such a function proved
too complicated to establish, so it was decided to simulate it with numerical tools, such as the k-wave
Matlab package. This is why undergoing this numerical simulation step would allow the genera-
tion of numerical results comparable to the experimental results, enabling the calibration of the sensor.

The simulation of the Green’s function was set to respect the same configuration adopted when recov-
ering experimental data involving a PAR (see Section 4.1.2) by using a supercomputer made available
by the Université catholique de Louvain. The computational system used in this study is a PowerEdge
T640 Server, optimized for high-performance tasks. It features an Intel® Xeon® Gold 5118 processor
(12 cores, 24 threads, 2.3 GHz) and 64 GB of RAM (8 x 8 GB, 2667 MT/s). Storage includes a 300 GB
15K SAS drive for the operating system and two 2 TB 7.2K RPM drives in RAID 1 for data redundancy.

The code of the simulation capable of giving the Green’s function using a PAR configuration (see
Section 4.1.2) can be found in Appendix C.

Two main configurations with an 8-centimeter difference were implemented. The choice to begin
detecting the water-air interface at 30 centimeters from the sensor is explained by the fact that this is
the shortest detection distance for the sensor under real-world conditions. The second distance of 38
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centimeters was arbitrarily set, as optimal calibration requires multiple measurements at different
distances from the water-air interface. As mentioned above, to initiate a simulation, four important
aspects must be determined: the grid, the properties of the layers, the source, and the receiver. For
each of the two configurations, these parameters are relatively similar.

The computational grid was set to conform to a size that is a power of two. A grid of 512×256×256
mm was thus simulated. Given that the Ping2 sensor has a beam angle of 25°, it is not necessary to
simulate a grid with excessively large values in y- or z-dimensions. Inside this grid, the monostatic
sensor and the interface are separated by the desired distance. With a uniform grid spacing of 1 mm
in all three dimensions (dx, dy, dz), they are positioned 300 grid points apart in the case of the 30 cm
simulation, and 380 grid points for the one of 38 cm.

For the choice of layers used, the primary propagation domain of the waves is water. To achieve this,
the density is set to 1000 kg/m3, and the speed of sound propagation in water is set to 1400 m/s
(similar to the real situation) throughout the grid. Only the values corresponding to the air layer
were modified to set the wave propagation speed at 343 m/s and the density at 1.2 kg/m3. Figure 4.6
refers to the density and wave velocity within the computational grid for the simulation case at 30 cm.

(a) (b)

Figure 4.6: Density (a) and velocity (b) grids for the simulated layers in the case of a perfect acoustic
reflector for a 512*256*256 mm grid.

The source, as previously mentioned, is a crucial aspect to simulate in order to approximate real-life
situations. The k-wave library provides the ability to implement a point source which can be configured
using two main parameters. The first is the magnitude, and the second is the radius of the source.
The magnitude is set in Pascals (Pa) and is defined by the following equation given by [Urick, 1983]:

SL = 10 log
source intensity

intensity of reference
, (4.2)

where, SL is the Source Level in dB.

Based on the information provided by the manufacturer of the Ping2 sensor, which states that the
SL for the reference intensity of one µPa at 1 meter is 198 dB, the calculated magnitude (source
intensity) is 7943 Pa (see Figure 4.7). As for the radius, it is specified in terms of the grid spacing
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(which is the same in all three dimensions). A radius of 25 is used to simulate a sphere with a 5 cm
diameter, capable of mimicking the sensor in use. Finally, the sensor is defined as a unitary collection
point and is placed in the exact center of the source.

Figure 4.7: Initial pressure conditions of the simulation in the case of a perfect acoustic reflector (30
cm apart from the source) for a 512*256*256 mm grid.

The configuration for 38 cm is identical in every aspect, except for the position of the interface and
the source/receiver, which are spaced an additional 8 cm apart.

4.2.2 Free field simulations

In order to capture the Hi(ω) signal presented earlier in Section 2.5, a free field measurement is
required. Note that in the model used, there is no physical source and receiver, but it is more an ideal
point source and receiver, so that Hi(ω) accounts for the direct transmission between the two points.

The free field measurement is based on the same configuration as the previous two spacings (30 and 38
cm), but with the water-air interface removed. As a result, the waves encounter only the PML placed
at the edges of the simulation and are absorbed. This ensures that only the waves and reflections
generated under free field conditions are captured when a signal is emitted. The density and velocity
are therefore uniform across the entire simulation surface at 1000 kg/m3 and 1400 m/s.

4.2.3 Pseudo-spectral time domain simulations

In this part of the experiment, simulations involving a different type of function than those previously
studied will be tested. These are the pstdElastic 2D and 3D functions. Unlike the previous ones,
these functions implement not only compression waves (P-waves) but also shear waves (S-waves)
allowing to introduce a solid layer. Unfortunately, these functions do not benefit from optimized
code and only allow for small simulation sizes, on the order of a few centimeters. It is therefore not
possible to obtain signals comparable to the configurations encountered in the laboratory, such as
those conducted in Section 4.1.3.

Two configurations are tested:
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• Simulation of two layers: one of water and one of sand (marine sediments). The source and
receiver will also be in a monostatic configuration with an initial pressure of 50 Pa. These values
were changed because of the small size of the simulation (the use of such a value helps maintain
a balance between spatial resolution and source amplitude. It was set arbitrarily through trial
and error until a simulation was achieved that minimizes artifacts from an overly large source).
Table 4.1 summarizes the parameters of the different simulated layers, and Figure 4.8 shows the
position of these layers within the simulation grid.

• Simulation of three different layers. The first layer (the uppermost) is a water layer. The next
layer is intended to mimic the presence of a mine, and finally, the last layer is composed of
sand. The aim of simulating a layer that mimics the behavior of a mine subjected to acoustic
waves is not ideal. Indeed, since the k-wave package does not allow for the simulation of specific
shapes, replacing it with a layer appears to be the best solution. The parameters of the source
and receiver remain unchanged from the previous configuration to remain consistent. Table 4.2
and Figure 4.9, respectively, present the physical parameters assigned to the layers and the way
they are arranged.

The Matlab code for the two configurations is provided in Appendix C.

Table 4.1: Physical parameters of the different simulated layers for the first configuration (water-sand
layers).

Layer Cp (m/s) Cs (m/s) ρ (kg/m³)
Water 1400 not applicable 1000
Sand 2000 800 1800

Figure 4.8: Simulation grid of 64×64×64 with a grid space of 0.0013 m, totaling 8×8×8 cm. The
source/receiver is marked by the yellow ball within the water layer and more than 2 cm away from

the orange sand layer (marine sediments).
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Table 4.2: Physical parameters of the different simulated layers for the second configuration
(water-mine-like-sand layers).

Layer Cp (m/s) Cs (m/s) ρ (kg/m³)
Water 1400 not applicable 1000

Mine-like (steel) 5800 3100 7850
Sand 2000 800 1800

Figure 4.9: Simulation grid of 64×64×64 with a grid space of 0.0013 m, totaling 8×8×8 cm. The
source/receiver is marked by the yellow ball within the water layer and more than 2 cm away from
the mine-like layer (in red). The third layer is sand (in orange) and is approximately 5 cm apart from

the sensor.
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Chapter 5

Results

5.1 Laboratory experiments

5.1.1 Gain function acquisition

The graph of acquisition of the different return strength profiles provided by the sensor over the
400-700 distance interval (429-715 mm if considering the virtual origin) is included in Figure 5.1.
The signal can be divided into two main parts. The first part of the signal is roughly between x = 0
ms and x = 0.25 ms and is also called the ringing signal because it refers to the internal resonance
artifact of the sensor. The second part, which starts at the end of the first and continues to the end
of the scan length, refers to the return echo information.

The choice of a user-adjustable gain equivalent to 5 is made so that a maximum of the values presented
does not show a complete saturated ringing signal. However, the measurement for 625 mm remains
relatively too saturated and is therefore excluded, as it does not allow for a reliable estimation of the
applied gain function.

Figure 5.1 shows several profiles in which the first part displays relatively similar signals but on
different scales. A recognizable repeating pattern is apparent. For the second part of the signal
corresponding to the return echo, the distance detection peaks correspond to the saturated peaks. If
one calculates the traveled distance by referencing the saturated peak, this distance indeed matches
that returned by the sensor. Each detection peak (in the second part of the signal) is separated by
a gap that indicates the additional time that the signal takes to reflect off its target. The overall
pattern is therefore relatively consistent, as it is possible to observe that these peaks move farther
apart as time, and consequently distance, progresses.

The presence of these saturated peaks in each of the profiles suggests that the sensor adjusts its
signal at each distance so that the returned distance is the saturated value. Therefore, the concept of
corrective and automatic gains makes perfect sense. To best retrieve this gain value, it is important
to focus on the first part of the signal (ringing signal) to understand how these profiles are scaled.

An additional observation is that, for most detection peaks in the second part of the signal, the value
reaches a maximum of 255 once before decreasing. This observation is valid with the exception of the
625 mm signal. This behavior is often observed during data acquisition and can be attributed to wave
interference effects. In particular, constructive interference occurs when waves combine coherently,
reinforcing the reflected signal and resulting in a stronger return. Conversely, destructive interfer-
ence happens when waves combine out of phase, effectively canceling out the reflection associated
with a specific scattering event. As McGrane et al. [2004] explain, constructive interference am-
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plifies reflections, while destructive interference can even cause the reflection zone to disappear entirely.

Finally, it is also interesting to note that in its initial part, the signal retrieved for all these values
tends to increase as the distance between the sensor and the detected interface increases (valid for the
range from 429 to 560 mm). Meanwhile, for other measurements, the opposite behavior is observed
(range from 675 to 715 mm). However, these changes are not abrupt and appear to occur between
two intervals or "zones" where the behavior remains consistent.

Figure 5.1: Profile data from 429 to 715 mm (values returned by the transducer) with a
user-adjustable fixed gain of 5.

Figure 5.2 illustrates the first step of the process presented in the methodology chapter (see 4.1.1)
to try to fit a linear model. To begin, the reference signal must be designated, corresponding to
the smallest signal in the presented interval, specifically the signal for the 429 mm distance. Based
on the basic assumption that the gain varies with distance, selecting the shortest distance value
as the reference signal is a logical choice. In this example, the signal of interest corresponds to 484 mm.

Figure 5.2 provides a zoomed view of the initial segment of the signal, with a threshold assigned to
each of the two studied signals to isolate their higher segments. This step is crucial to capture the
tendency of the signals to increase with distance. The threshold is set at a relatively high identifiable
point that recurs consistently across all retrieved signals. These thresholds are represented by red
circles and are equivalent to 10 for the first signal and 22 for the second signal.
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Figure 5.2: First part (ringing signal) of the two signals studied with a threshold (in red circle)
applied to all the corresponding profile data.

Figure 5.3 presents the ratio of all values that exceed the threshold of 22 for the second signal (484
mm) to those that exceed the threshold of 10 for the reference signal (429 mm). The graph is divided
into two main sections. It is readily observed that the first section is relatively flat, whereas the
second exhibits numerous variations. These results support the hypothesis that the initial portion of
a signal at one distance closely resembles the corresponding portion of a signal at a different distance.
This similarity holds except for a scaling factor that appears to multiply the values of the first signal
to produce the second.
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Figure 5.3: Graph of the ratio of the first signal (interest signal) to the second signal (reference
signal) for values exceeding their respective threshold.

Figure 5.4 provides a zoomed view of the initial section, previously described as relatively flat. Upon
closer inspection, a more scattered distribution of points becomes apparent. With the ratio values
now magnified, it seems that they change over time.

Figure 5.4: Zoom on the initial section of the graph showing the ratio between the two studied
signals.
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Figure 5.5 represents the final step in the gain function recovery process. By fitting a linear regression
model to the set of residual points, the resulting line equation corresponds to the gain function. In
this case, it corresponds to: g(t) = −0.085 · t+ 2.074. However, this figure also shows that the data
do not clearly follow a linear trend and that if we try to fit a linear model anyway, its slope is very
small. A correlation coefficient of −0.059 indicates a very weak and negative relationship between the
two variables, suggesting that they are almost independent. The R2 value of 0.003 shows that the
independent variable explains only a negligible portion of the variation in the dependent variable.
Note that the very small value of the slope can also be explained by the noise level encountered,
which renders it insignificant. In other words, the apparent variations in gain could simply be due to
noise rather than an actual variation.

Figure 5.5: Graph of the linear model applied to all the values resulting from the ratio of the
previously filtered points.

Now, repeating the gain calculation process across all signals in the range of 429 to 715 mm allows
one to obtain 3 other equations which are presented and fitted in Figure 5.6. The observation remains
the same as before. In fact, even though the slopes of the lines are all positive this time, the R2

values are too low to conclude that a linear model fits. Figure 5.7 allows for better visualization of
these previously obtained lines. It also shows a line whose equation would have allowed us to recover
the average gain function applied across a whole set of values if this linear relationship had been
proven, but attempting to combine all these equations into an average equation is not conclusive.
Consequently, our applied gain function called g(t) cannot be attributed to the average equation of
the linear regression. The regression hypothesis is thus rejected along with the trend because the gain
of the system automatically changes.
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(a)

(b)

(c)

Figure 5.6: (a) Plotting the straight line of the linear model on the interest signal of 560 mm, (b) of
675 mm, and (c) of 715 mm.

62



Figure 5.7: Linear regressions for different signals along the studied interval (429 to 715 mm) and the
average gain equation.

The final figure dealing with the gain is that of the normalized signal (see Figure 5.8). To obtain this
graph, start with the raw unprocessed signals and divide each of them by their characteristic linear
equation (although the linear relationship is not proven). This normalized signal is quite interesting
as it rescales all signals based on the importance of the amplitude of their first section.

After this division, we can observe that almost all signals share an identical ringing signal which is
representative of direct reflections inside the sensor. Subsequently, each signal shows a first reflection,
which is the target, followed by multiple reflections. These same multiple reflections are also followed
by reflections coming from a distance greater than the target. It is also interesting that the first
reflection due to the target for an initial signal (at a shorter distance) is followed by a similar but
weaker reflection at a greater distance. This observation can be generalized for the first 4 signals, but
not for the last signal at 715 mm, which increases instead of decreasing. The observed increase in the
peak may be the result of constructive interference caused by internal sensor reflections or external
clutter, for example, the edges of the box.
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Figure 5.8: Signals collected by the sensor during measurements taken at different distances from the
bottom of the tank, from which the previously calculated linear gain functions have been removed.

5.1.2 Perfect acoustic reflector (PAR) measurements

Figure 5.9 allows us to visualize the difference between using a user-adjustable gain of 5 and 0. For
a gain of 0, the air-water interface is clearly visible, and only a slight mark of multiple reflection is
observed. They are visible at 0.6 m, which is twice the position of the perfect acoustic reflector at 0.3
m (two-way travel distance). The use of a gain of 5 is tinged with multiple reflections between the
sensor and the water-air interface again.
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(a) (b)

Figure 5.9: Images from the Ping Viewer application. Both images were taken in the same
configurations and distances, with only the user-adjustable gain changing. (a) uses a gain of 0, while

(b) uses a gain of 5.

For sensor calibration, several signals recorded at different heights and involving the PAR configuration
have been recovered. Figure 5.10 shows the plot of these signals.

The distances returned by the sensor are not accurate. Indeed, when moving from gain 0 to 5, the
measurements seem to focus on multiple reflections. However, a first detection peak (inside the red
dashed lines) for each measurement is visible near the actual distances separating the sensor from the
water-air interface and does not saturate.

Figure 5.10: Graph for 4 different heights spaced 4 cm apart in the perfect acoustic reflector
configuration. The area between the red dashed lines indicates where the detection peaks would be

located if the user-adjustable gain had been set to 0.
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5.1.3 B-scans scenarios

The B-scan results obtained with the sensor show significant differences depending on the configura-
tions studied. In Figure 5.11 (a), only a Plexiglas plate is present at the bottom of the tank. It is
therefore possible to observe a distinct yellow line appearing after 0.3 milliseconds, indicating a clear
reflection of the signal as it strikes this rigid, dense surface. However, vertical artifacts due to the
high gain interfere with accurate detection of the real background. It is noticeable that the signal is
irregular (mostly at the beginning) due to the sensor’s acceleration and deceleration phases. This
irregularity can also be explained by the presence of a rounded dome that acts as a water outlet on the
side of the water tank. This dome, curved inward, introduces a discontinuity in the ground reflections,
adding further disturbances superimposed on those linked to acceleration at the start of the movement.

In Figure 5.11 (b), with 1.5 cm of sand added (see Figure 4.5 (a)), a more diffuse reflection is observed
just at the 0.3 ms mark, indicating that the level of the reflected surface has increased. Absorption
and scattering of ultrasonic waves by the sand attenuate the reflected signal, making the background
less distinct and introducing a slight delay compared with the Plexiglas in its configuration alone.
This attenuation can also be explained by a smaller reflection coefficient with the new water-sand
interface. Variations in the speed of the transducer and the rounded dome continue to affect the signal
at the beginning of the scan, creating disturbed and less coherent patterns. Sand also introduces the
notion of discontinuity since the way it is incorporated into the tank does not allow for a smooth
deposit. As a result, the impression of a smooth surface, as observed in the configuration with only
Plexiglas, is slightly lost.

(a) (b)

Figure 5.11: B-scan over 80 cm length and gain at 5. (a) is the configuration with Plexiglas alone
and (b) shows both the Plexiglas and 1.5 cm of sand superimposed. Neither includes a target.

When a target is added on top of this sand layer (see Figure 4.5 (b)), such as a brick in the case of
Figure 5.12 (a), the B scan shows complex reflections between 0.2 and 0.3 milliseconds. Concrete
brick, as a dense and rigid material, introduces marked reflection patterns and areas of high yellow
intensity visible between pings 30 and 60 marked with a red rectangle. These patterns are due to
the presence of an additional interface in addition to sand, in this case brick. As in previous con-
figurations, the start of the B-scan remains affected by perturbations in the experiment’s configuration.

An interesting observation is to add to the previous configuration a second target. This time, the
new target is lighter, less dense, and smaller than the first. This refers to the rock located on the
left in Figure 4.3. Figure 5.12 (b), which refers to the configuration 4.5 (c), clearly shows once again
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the brick placed next to the stone. However, the rock, which should appear around ping 70, is not
directly visible (it should be located at the end of the red arrow). This may be due to its smaller size
and the lack of a sufficiently large flat reflective surface.

(a) (b)

Figure 5.12: B-scan over 80 cm length and gain at 5. (a) is the configuration with Plexiglas, 1.5 cm
of sand and a target (brick) in the red rectangle and (b) is Plexiglas, 1.5 cm of sand and two targets

side by side (brick and rock). The red arrow indicates where the rock should be detected.

This paragraph is now included in this results section to test the detection range of the Ping2 sensor.
The manufacturer specifies a -3 dB beam width of 25 degrees.°. Knowing the height separating the
sensor from the target and the value of this angle (see Figure 5.13), it is easy to calculate that the
sensor will have difficulty effectively detecting the target once the cross distance (the distance between
the sensor and the target perpendicular to the motion) exceeds approximately 10 centimeters, as
calculated in the following Equation (5.1):

x = 45 cm · tan(12.5◦), (5.1)

giving:
x ≈ 45 · 0.2217 ≈ 9.98 cm

Figure 5.13: Calculation of the maximum effective detection distance (in green), also known as the
cross distance.

If we refer to Figure 5.14, this is indeed what can be observed. In image (a), when the cross distance
is 10 cm, the concrete brick is barely detected (in the red rectangle) and appears much less clearly

67



than in the previous figures. Although it is still possible to detect a trace of the brick, it is because the
brick still appears at the edge of the beam, as part of its length remains visible in the field. Note that
the brick still appears in the same ping interval because it has not moved. It is the sensor that has
been slightly shifted by a few centimeters along its Y-axis. However, once this distance is increased
by a few centimeters (until 25 cm), as in image (b), the brick completely disappears from the sensor’s
field of view, confirming the sensor’s functional range. However, it is possible that a part of the brick
is indeed hit, but its orientation relative to the incident waves causes reflections that do not return to
the sensor.

(a) (b)

Figure 5.14: B-scan over a length of 80 cm and gain at 5. (a) is the B-scan for a cross-distance
configuration equal to 10 cm with the concrete brick in the red rectangle and (b) for a cross-distance

of 25 cm. Both configurations include the Plexiglas layer, a 1.5 cm layer of sand and a brick.

The final experimental configuration involving B-scans concerns the detection of a concrete brick
at different burial depths in the sand. Figure 5.15 presents the four scenarios tested, in which a
progressive decrease in the visibility of the brick is observed as the thickness of the sand layer increases.
In Figure 5.15 (d), the top surface of the brick is barely visible from the surface of the sand. However,
we can see that the brick sends a stronger signal than the surrounding sand. Since the brick is denser,
it is no surprise that the reflection is greater.
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(a) (b)

(c) (d)

Figure 5.15: (a) B-scan with a brick, just above the surface of the sand (b) B-scan for the brick
buried in 1.5 cm of sand (c) B-scan for the brick buried in 2.5 cm of sand (d) B-scan for the brick

almost fully buried. The brick is in the red rectangle in both images.

5.2 Numerical simulations

5.2.1 Green’s function and free field simulations

Thanks to the optimized CPU codes, the simulation for the configuration with a 30 and 38-centimeter
distance between the monostatic sensor and the water-air interface is completed in just over 7 hours.

A simple sketch showing the sensor for simulations conducted at distances of 30 cm and 38 cm from
the air-water interface is shown in Figure 5.16.

As stated earlier, the receiver is a unitary point located exactly in the middle of the emitting source.
It is possible to record the signals received by this entity throughout the simulation. Figure 5.17
specifically shows the history of the signals received by the sensor when a water-air interface is placed
30 cm from it. The vertical axis represents the intensity of the received signal, ranging from 0 to 1
with black indicating high pressures and yellow tending toward zero pressures, but also from 0 to -1
for negative pressures. This value scale enables one to capture even the slightest variations, allowing
us to analyze the behavior of the waves during the simulation. In this figure, a distinct black mark
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can easily be observed at the initiation of the simulation. This corresponds to the signal emitted by
the source and directly captured by the receiver.

Then, just after 0.1 ms, a second mark is visible. To understand this second mark, it is essential
to consider how the source emits waves. This source cannot be configured with a beam angle and
therefore emits waves circularly from its center in all directions. Thus, as shown in Figure 5.18, the
waves propagating to the right, left, and behind quickly bounce off the edges of the simulation. This
behavior is suboptimal because the PML should act as an absorbing layer but seems to be unable to
absorb all the incident waves. This occurs when the simulated pressure amplitudes are too high for
the k-wave package. However, Figure 5.19, which captures the sensor signal according to the pressures
encountered, does not indicate this pressure peak, suggesting that these pressures are minimal and do
not interfere with the received signal. Therefore, PML works relatively well.

Finally, around 0.4 ms (corresponding to a distance of 60 cm for the wave to reach the interface and
return to the sensor), reflections caused by the encounter with the perfect acoustic reflector can be
observed. These waves that return to the source after nearly bouncing off the interface appear to be
broken down into multiple waves, as if they interact with the structure, causing multiple reflections
and giving them a fragmented appearance.

Figure 5.16: Simple sketch of the configuration for the water-air interface at 30 cm and 38 cm from
the sensor.
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Figure 5.17: Graph of the pressure return against a water-air interface located 30 cm away from a
point source of 7943 Pa. The x-axis, which was previously expressed in time steps, has been

converted back to ms.

Figure 5.18: Time lapse of the simulation of an incident wave of 7943 Pa at 30 cm from a water-air
interface. The source/receiver is

Figure 5.19, which presents the signal recorded by the sensor, traces the pressure changes within it. At
the start of this simulation, the source records a positive pressure variation of nearly 8000 Pa due to the
emission of waves by the source. Shortly after, the signal drops to negative pressures, reaching almost
-80,000 Pa. This extreme pressure is explained by the fact that the sensor is located within the source
itself. Since the distance between the source and the sensor is very small (possibly zero), the direct
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signal could theoretically be infinite, leading to these extreme pressure values. This behavior varies
depending on the model implementation. The remainder of the signal is relatively smooth, staying
close to a pressure of 0 Pa most of the time, until the waves reflected by the interface return to the
sensor. Thus, after 0.4 ms, a pressure variation can be observed due to their return to the sensor. Fig-
ure 5.19 (b) provides a close-up view of this pressure variation, showing values of a few hundred Pascals.

(a)

(b)

Figure 5.19: (a) Signal received by the sensor for a water-air interface located 30 cm from a point
source of 7943 Pa. (b) provides a close-up of the pressure change caused by the returning waves.

After measuring the pressure evolution 30 cm from the interface, it is possible, by removing the
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interface, to perform a simple pressure measurement in the free field, the result of which is shown in
Figure 5.20. As previously observed, the same pressure variations (of the same magnitude) appear
at the beginning of the simulation. The remainder of the graph is a line that hovers around 0 Pa
throughout the time interval. This serves as a verification that the simulation is working correctly, as
no pressure changes are recorded. The free field simulation for 30 cm and 38 cm is identical, since
both simulations share the same grid dimensions. Even if the source is in different locations, the signal
recorded by the sensor remains the same because no wave is reflected from the absorbing boundary
conditions.

Figure 5.20: Free feel signal for a point source at 7943 Pa and a grid size of 512*256*256 mm.

The retrieval of Hi(t) (here in the time domain as it allows for a simple subtraction without requiring
a Fourier transform like in the frequency domain) presented earlier in Section 2.5 is possible once
the signal is recorded for both the interface configuration and the free field configuration. It simply
requires subtracting the free field signal from the signal obtained with the interface. By doing so, it
is possible to isolate a signal that represents only the pressure variation caused by the interaction
with the interface, free from any disturbances related to the sensor itself. The result for the 30 cm
simulation is presented in Figure 5.21 and in Figure 5.22 for the 38 cm simulation.

These two filtered signals are quite interesting because they provide a relatively clean and well-detailed
representation of the signal resulting from the reflection of the incident waves. Another observable
phenomenon is the attenuation of waves as they travel through the computational grid. It seems that
the attenuation follows a pattern 1/R due to the spherical spreading of the waves (with R equal to
the distance traveled). For just an additional 16 cm of travel, an attenuation of approximately 20 Pa
is observed in the positive range and around 20 Pa in the negative range between the two signals.
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Figure 5.21: Filtered Hi(ω) signal for a water-air interface located 30 cm from a point source of 7943
Pa.

Figure 5.22: Filtered Hi(ω) signal for a water-air interface located 38 cm from a point source of 7943
Pa.

5.2.2 Pseudo-spectral time domain simulations

For the first configuration, which involves a layer of water and a layer of sand, it is possible to observe
how the P-waves and S-waves propagate throughout the simulation in Figure 5.23. The main wave,
when it hits the sand interface, generates shear waves. Of course, the compressional waves continue
to travel within this new layer as well. It is interesting to note that these waves move faster than the
shear waves. The final frame notably allows us to visualize this difference in speed, as the P-waves
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have completely disappeared (because they have already reached the end of the simulation grid),
while the S-waves are still traveling through the same sand layer.

Figure 5.23: Time-lapse of the propagation of a 50 Pa wave within a layer of water and sand inside a
8*8*8 cm size grid.

If we now look at the filtered signal (to which we subtracted Hi(t)) received by the sensor, shown in
Figure 5.24, we can observe a pressure variation around 3 · 10−5 s. This pressure variation is, in fact,
caused by the waves that travel back towards the sensor after reflecting between the interface of the
water and sand layers.

Figure 5.24: Filtered signal recorded by a monostatic sensor in a configuration involving a layer of
water and a layer of sand.

75



The results of the configuration involving three layers, including a water layer, one resembling a mine,
and finally a sand layer, are presented in Figures 5.25 and 5.26. The first one is once again a time
lapse that allows for the visualization of the movement of both types of waves over time. A relatively
interesting observation is that the shear waves that originate within the layer representing the mine
move very quickly and in a rather complex manner. The propagation pattern resembling a semicircle,
which was observed in the previous configuration when interacting with the sand (see Figure 5.23), is
not the same. This is due to the relatively high speed of these waves within a layer exhibiting such
physical characteristics. The transition of waves from the like-mine layer to the sand layer is quite
weak and barely perceptible. It seems that they have more difficulty passing from one solid layer to
another, whether for P waves or S waves. These waves appear to propagate more quickly.

Figure 5.25: Time-lapse of the propagation of a 50 Pa wave within a layer of water, mine-like and
sand. Grid size of 8*8*8 cm.

Figure 5.26, which shows the filtered signal (to which we subtracted Hi(t)) received by the sensor,
also presents a pressure variation peak. This peak is relatively stronger than the one observed in the
two-layer configuration for two reasons. The first is that the layer mimicking the mine appears to
reflect the waves more effectively, and the second can be simply explained by the fact that the sensor
is located slightly closer to the first reflection layer.
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Figure 5.26: Filtered signal recorded by a monostatic sensor in a configuration involving a layer of
water, a mine-like layer and a layer of sand.
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Chapter 6

Discussion

6.1 Laboratory experiments

6.1.1 Gain function recovery

The gain recovery process therefore relies on an inverse modeling principle, which can lead to numerous
errors. The method of recovering the gain may also seem somewhat subjective in its threshold setting
approach, but the additional figures in the Appendix B prove that regardless of the threshold setting
method, the coefficients R2 are too low to conclude in any case that there is a linear model.

Figure 5.8, which enables obtaining normalized signals, is quite interesting to discuss because by
dividing each signal by its attributed linear equation, we recover a striking similarity in the first part of
the signal that even allows them to overlap. Thanks to this similar part, we can, in a way, compare the
signals in their second half. A constant linear gain would have allowed drawing a line passing through
all the tops of the first peaks related to the target reflection. Here, this is not the case. The dif-
ferent scaling of signals in their second half is almost entirely due to the y-intercept of the line equation.

In other words, a different constant seems to be applied to each signal almost entirely due to the
y-intercept of the line equation. It could therefore be concluded that the applied gain is constant
throughout the signal but increases as the distance between the object and the sensor increases.
However, this claim is not proven for the last signal, where the gain applied to the signal is lower.

It appears that it is not possible to retrieve the gain that is automatically adjusted by the sensor
because the gain changes without following any apparent logic. It may even be that the gain changes
based on a concept of zones: thus, the applied gain would increase as the distance increases, and in
other distance intervals or zones (whether larger or smaller), it would decrease.

In addition to the changes observed between measurements within the same interval, another source of
variability must be introduced. This refers to the difference observed when two signals are taken at the
same distance and in an entirely identical configuration. In fact, Figure 6.1 shows two measurements
taken at different times (a week apart) for similar distances. The adjusted parameters and sensor
configuration remain the same. However, although the sensor should return the same signal, the result
differs. Indeed, the newly measured distance is no longer 445 mm, but 870 mm (see the saturated
peak). A significant peak still appears near the distance that should be returned. Thus, under
perfectly similar conditions (even though the temperature varies by a few tenths of a degree), the sig-
nals returned for the same configuration differ, and the gain is adjusted in an incomprehensible manner.

In the case of the Ping2 sensor, the gain seems to change for reasons other than distance. Other
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parameters, entirely beyond the user’s control, must play a role in signal recovery. This sensor is
designed to return a distance measurement as reliably as possible, regardless of the cost (manipulation
and adjustment of the reflected signal). Its use in the context of this thesis seems to exceed the
sensor’s capabilities when it comes to the quality of the recovered signals.

Moreover, the inability to retrieve decimal data significantly limits the precision of the measurements,
making it challenging to apply advanced processing methods.

Figure 6.1: Graph of signals returned for the same configuration one week apart (11/19-2024 to
11/26-2024).

6.1.2 Perfect acoustic reflector (PAR) configurations

When the gain goes from 0 to 5 the signal changes to the extent that the transducer no longer
recognizes the air-water interface as the main target, but thinks that a multiple reflection is our
new surface of reflection because it is more pronounced. This does not pose a problem since the
signal recovered up to the real interface is no longer saturated. As mentioned previously, multiple
reflections are most likely responsible for this confusion, as they are reported relatively periodically.
These multiple reflections can be explained by waves that bounce off the air-water interface, hit the
bottom of the tank, and return to the sensor but could also be waves that reflect off the device, go
again to the water-air interface, and come for second time to the sonar.

All the collected signals appear to be usable for comparison with the numerical simulations (here,
only the distances of 30 cm and 38 cm can be compared). However, the residual issue is that the
gain applied to these different measurements remains unknown, making it impossible to adjust them.
As a result, the comparison is not feasible (not to mention that the simulations provide a pressure
measurement compared to a return strength measurement for the sensor).

6.1.3 B-scans scenarios

Analysis of the B-scan results reveals a number of areas for improvement but also some interesting
observations. The gain of 5 chosen when configuring the sensor introduces significant noise and
vertical artifacts that complicate interpretation of the results and prevent accurate detection of the
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bottom of the reservoir.

The change in the type of surface from Plexiglas to sand observed in Figure 5.11 indicates that the
sand absorbs and scatters part of the signal, making the bottom less visible. This can be explained
by a different reflection or absorption coefficient. This absorption is typical for granular materials,
which are less homogeneous than Plexiglas. Secondly, the addition of a relatively large target, such as
a brick, produces additional reflections, confirming its presence with high-intensity patterns. These
results could demonstrate that the sonar sensor is sensitive to the materials present and their interfaces.

There are also important technical limitations related to the experiment that need to be improved.
The acceleration and deceleration phases of the sensor make it difficult to assign an exact position
to each ping in terms of time or distance, which is a notable limitation. However, this situation is
close to real-life conditions for bathymetry or other types of measurement (including the way the
SBSS moves and collects data), where the speed of a boat or robot conducting the surveys is not
always constant. In practice, these vehicles often take continuous measurements, and variations in
sensor position and angle due to water agitation (waves, currents) influence the readings, adding a
complexity similar to that observed in the laboratory (although they are equipped with differential
GPS for positioning each measurement, regardless of the velocity variations). In addition, the motion
of the vessel and the position of the sonar projector relative to the environment influence the quality
of the data [Bjørnø et al., 2017]. However, acceleration and deceleration remain a concern. To improve
these experiments in the future, it would be beneficial to use a sensor capable of accurately knowing
the position of each ping in its environment. This would correct inaccuracies due to speed variations
and improve the spatial resolution of the B-scans, as it is not known whether these nonuniform phases
affect the reception of the signal by the receiver.

Another limiting factor is the size of the water tank used. With a volume of one cubic meter, the
tank is relatively too small for this type of experiment. Even if the measurements are carried out
in the far field, the confinement of space favors multiple reflections off the walls and rounded dome,
introducing noise and additional disturbances. These reflections can disrupt the main signal and
complicate the analysis of the results.

Finally, one of the last areas for improvement concerns the distribution and control of the height
of the sand. In experiments, it is difficult to obtain a perfectly uniform surface once the sand is
immersed, resulting in variable sand heights that affect signal reflections. A method allowing a
more homogeneous sand distribution would improve the reliability of the measurement and the
reproducibility of the results.

6.2 Numerical simulations

6.2.1 Green’s function and free field simulations

For configurations with a water-air interface located at 30 cm and 38 cm, the simulations yield the
Green’s function for 2 different distances. Thus, these two configurations could have been compared
with the results obtained in the laboratory, for the same distances, if the gain was removed, to
calibrate the Ping2 transducer.

The results show marked variations in the amplitudes of the returned signals. These differences are
directly related to the distance traveled by the waves and the reflection at the interface. The results
show a temporal shift in the pressure peaks when the interface is moved, reflecting the proportional
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increase in the round-trip travel time. These observations corroborate the accuracy of the modeling.

In a free field configuration, the absence of a reflective interface highlights only the intrinsic properties
of the source and the sensor. The signals recorded in this configuration serve as a reference to isolate
parasitic contributions (such as internal reflections and transmissions of the transducer, modeled by
Hi(ω). The measurements can be corrected usingHi(ω), which provides a more accurate representation
of wave-medium interactions.

6.2.2 Pseudo-spectral time domain simulations

In simulations involving different layers, PSTD functions highlight the differences in wave propagation
between a fluid and a solid. The introduction of a layer resembling a mine is an excellent exercise
to understand how the waves received by the sensor are affected. The more complex configuration,
including a layer simulating a mine between water and sand, reveals reflections and transmissions
specific to the physical and acoustic characteristics of the "mine."

However, these simulations are limited by the size of the computational grids, preventing direct
comparison with measurements conducted at the laboratory scale (although the configurations are
not identical, except for the setup involving only a sand layer). This part of the simulation is
therefore purely exploratory, although the results demonstrate the relevance of the PSTD functions
for analyzing realistic scenarios.

The use of the k-wave package proves to be highly useful for simulating all acoustic phenomena
occurring in a given situation. That said, this package has its limitations. In fact, it is not always
suitable for every scenario encountered. The shape of the source and the way waves are initiated do
not fully conform to the real tests conducted in the laboratory. Furthermore, k-wave does not directly
provide a monostatic configuration, which can introduce biases into the results obtained. Finally, the
use of PSTD functions simulates scenarios that again differ from those encountered in laboratories
due to several factors, such as the inability to reproduce specific object shapes or the fact that the
simulated layers are homogeneous throughout and insufficiently representative of natural layers.
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Chapter 7

Conclusion and prospects

7.1 Conclusion

The aim of applying the GPR methodology, specifically designed for electromagnetic waves, to
acoustic waves is an ambitious goal that, to the best of our knowledge, has never been tackled before.
The purpose of this thesis was to provide all the elements necessary to achieve this adaptation.
Unfortunately, the overall goal was not reached. This can be explained by several factors.

One of the most limiting factors in this thesis was the choice of transducer. This choice was made
because of its ease of access, programming, and configuration. However, the applied dynamic gain
function is not known and could not be retrieved. Additionally, the system only returns integer values,
without any decimals, making this sensor unsuitable for this type of experiment.

The inability to retrieve the gain function and therefore the raw signal, makes it impossible to compare
the results obtained through numerical simulations using the k-wave package. Thus, it is not possible
to compare the simulated signals using the PAR at different distances with those collected in the
laboratory under the same configuration.

However, these same numerical simulations provide consistent results that help to better understand
how acoustic waves propagate. Simulations using the k-wave package also allowed us to obtain the
Green’s function for the 3D propagation of compressional waves in multilayered media, which was
difficult to find in its analytical form in the literature.

In addition, these simulations allowed us to numerically recover one of the transfer functions Hi(ω)
following the retrieval of signals under free field conditions. Unfortunately, the inability to compare
the simulated signals with those collected under experimental conditions means that the transfer
function Hi(ω)) cannot be used for further signal processing (even if the results had coincided). It is
worth noting, however, that measurements to retrieve the transfer function Hi(ω) under laboratory
conditions would have been complicated, as it requires subtracting the signal under free field conditions.
In fact, the water tank used is too small and would not have allowed such a configuration due to the
numerous multiple reflections caused by its size.

Finally, the different scenarios, whether conducted in the laboratory or through numerical simulations,
are relatively interesting, as they implement the concept of layers with varying acoustic and physical
properties, while also introducing the notion of a target. The results of the B-scan were intended to
serve as a database from which the filtered signal could be retrieved after applying the methodology
to enhance the signals.
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7.2 Prospects

For future perspectives, many details need to be improved in order to apply the GPR methodology
to sonar signals. Indeed, one of the first areas for improvement would be to use a sensor that returns
signals from which the acoustic pressure can be easily retrieved directly, rather than values for return
forces set by the manufacturer. The goal is also to be able to easily recover the applied gain function
or simply be able to disable the offset. Additionally, the experimental setup should ideally be adjusted
to include a much larger water tank, such as a swimming pool, a lake, or even the sea, to enable
measurements under free field conditions.

Regarding the use of the k-wave package, although it allowed for accurate simulation of certain
configurations, the inability to replicate the shape of a specific object, such as a mine in this case, is
a significant limitation. Another, more recent numerical simulation software in the library, which
takes this type of parameter into account, would be a real improvement.

One of the final points to improve concerns the B-scan sections. These should be performed without
acceleration or deceleration phases, or alternatively, the measurements could be synchronized with
the scanner, as is done with GPR. They should also involve targets that closely resemble real mines.
Furthermore, ideally, the target should be submerged much deeper than was done in the current
setup, in order to later retrieve the burial depth of the object.
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Appendix A

Fundamental concepts

Bandpass

A bandpass signal is characterized by its spectral content being restricted to a specific frequency
range fc. The mathematical expression for a bandpass signal is [Abraham, 2019]:

s(t) = a(t) cos(2πfct+ ϕ(t)),

where a(t) is the amplitude and ϕ(t) is the phase. Bandpass signals can be classified as narrowband
or broadband.

Narrowband signals

A signal is classified as narrowband if its bandwidth W is significantly smaller than its center frequency
fc. The condition is expressed as:

W

fc
≪ 1.

Broadband signals

In contrast, a broadband signal (also known as wideband) has a bandwidth W that is large relative
to its center frequency fc. This can be represented as:

W

fc
≫ 1.

Bulk modulus

The bulk modulus (κ0) is a mechanical property of materials that describes their resistance to
volumetric compression. It is defined as:

κ0 = −V ∂P
∂V

,

where P is the pressure and V the volume. As said earlier, the bulk modulus is directly related to
the speed of acoustic waves in the formula:

c =

√
κ0
ρ0
,
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where ρ0 is the density of the fluid and c is the speed of sound.

The table below presents typical values of κ0 and the speed of acoustic waves (c) for different materials:

Material κ0 (Pa) ρ0 (kg/m³) c (m/s)
Air 1.42× 105 1.2 343
Water 2.2× 109 1000 1482
Sand (sediments) 6.0× 107 1900 177
Metal (steel) 1.6× 1011 7800 5100

Table A.1: Values of bulk modulus and acoustic wave speed for common materials involved for
underwater detection.
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Appendix B

Additional figures

Figure B.1: Illustration of a Chirp signal from [Hsu et al., 2016].
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SABLE SILICEUX DE MOL M31 - M32 - M34 

Sibelco Benelux 
De Zate 1 - BE-2480 Dessel 

tel. +32 14 83 72 11 - fax +32 14 83 72 12 
www.sibelco.be 

 

 

 

 

 
Après extraction, les sables siliceux de Mol - M31, M32 et M34 - sont tamisés, lavés et 
classés.  Ces sables sont disponibles humides ou secs; par camion, wagon ou navire; en 
vrac ou en sacs (sables secs). 
Les sables siliceux de Mol conviennent parfaitement comme matière première pour les 
verreries, les cristalleries, les industries céramiques, les fonderies, les colles pour carrelage, 
les plâtres, les mortiers, les revêtements etc. 
 
 
 
 

ANALYSE GRANULOMETRIQUE ET CARACTERISTIQUES PHYSIQUES   
Méthode:  ISO-tamisage 

          M31         M32 M34           
 
D50 370 260 170              µm 
 
AFS 45 50 75 
     
> 1000 µm  1                           % 

>   710 µm  5     % 

>   500 µm    25                % 

>   355 µm   53  7               % 

>   250 µm   85  57  3             % 

>   180 µm   98  93  30             % 

>   125 µm       91             % 

<     63 µm  traces ≤ 0,1  ≤ 0,3 %  

 
densité réelle  2,65  2,65  2,65 kg/dm3 

 
densité apparente  1,6  1,5  1,4 kg/dm3 

 
dureté  7  7  7 Mohs 
 
pH  7  7  7 
 
perte au feu  0,15  0,15      0,15  % 
 
couleur L* 70 70  72            Minolta CM-3610
 a* 2,63 2,79  1,93 D65/10° 
 b* 9,58 9,82  7,76 
 

 
 

 
TDS.03.05.10  2010-12-09  1/2 

 

Figure B.2: Technical data of the sand used
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Figure B.3: Diagram of transducer operation once the signal has been sent.
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Another gain function acquisition method

The previous method used to attempt to retrieve the gain function is detailed below. It has deliberately
not been presented as it is considered less objective. The following steps explain the method applied
on the same distance interval (429 to 715 mm):

• Begin by defining a reference signal, which should be the smallest distance measured by the
sensor (429 mm).

• Next, independently take the other signals and divide them by this previously set reference
signal.

• Focus on the result of the division and target only relatively stable values. To achieve this, set
an acceptable threshold based on the smallest undefined value in the division graph, representing
the smallest point of discontinuity where the division tends toward an infinite or undefined
value.

• Once this threshold is determined and the values are filtered, a linear model can be fitted,
assuming the gain follows a linear adjustment over time.

• Divide the raw signals by the corresponding linear relationship.

The results are presented here (note that the 625 mm profile data is not removed):
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(a) (b)

(c) (d)

Figure B.4: (a) Graph of the ratio value between the 484 mm signal and the 429 mm reference signal.
(b) Focus on the first part of the signal, corresponding to the ringing signal. (c) Filtering the data
according to the smallest discontinuity value encountered. (d) Plotting the straight line of the linear

model on the filtered values.
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(a) (b)

(c) (d)

Figure B.5: (a) Plotting the straight line of the linear model on the filtered values of the 560 mm
distance measurement, (b) on the filtered values of the 625 mm distance measurement, (c) on the

filtered values of the 675 mm distance measurement, (d) on the filtered values of the 715 mm
distance measurement.
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Appendix C

Codes

Ping2 codes

The code for Ping2 data acquisition is available below:
1 # simplePingExample.py
2 from brping import Ping1D
3 import time
4 import argparse
5 import pandas as pd
6 import os
7 import struct
8 from builtins import input
9

10 # Parse command -line arguments for device configuration
11 parser = argparse.ArgumentParser(description ="Ping Python library example .")
12 parser.add_argument(’--device ’, action =" store", type=str , help="Ping device port

(e.g., /dev/ttyUSB0)")
13 parser.add_argument(’--baudrate ’, action =" store", type=int , default =115200 , help

="Ping device baudrate (default: 115200) ")
14 parser.add_argument(’--udp ’, action =" store", type=str , help="Ping UDP server (e.g

., 192.168.2.2:9090) ")
15 args = parser.parse_args ()
16

17 # Ensure either a device or UDP is specified
18 if not args.device and not args.udp:
19 parser.print_help ()
20 exit (1)
21

22 # Initialize the Ping device
23 myPing = Ping1D ()
24 if args.device:
25 myPing.connect_serial(args.device , args.baudrate)
26 elif args.udp:
27 host , port = args.udp.split(’:’)
28 myPing.connect_udp(host , int(port))
29

30 if not myPing.initialize ():
31 print(" Failed to initialize Ping !")
32 exit (1)
33

34 print("------------------------------------")
35 print(" Starting Ping ..")
36 print(" Press CTRL+C to exit")
37 print("------------------------------------")
38

39 input(" Press Enter to continue ...")
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40

41 # Initialize a list to store profile data
42 profile_data_list = []
43

44 # Function to decode profile_data from bytes to a list of integers
45 def decode_profile_data(profile_data_bytes):
46 return list(struct.unpack(’<{}B’. format(len(profile_data_bytes)),

profile_data_bytes))
47

48 # Configure the Ping device
49 myPing.set_speed_of_sound (1400000) # Set speed of sound to 1400 m/s
50 print(f"Speed of Sound: {myPing.get_speed_of_sound ()}") # Optional debug output
51

52 # Set scan parameters
53 scan_length = 1000 # mm
54 scan_start = 0 # mm
55 myPing.set_range(scan_start , scan_length)
56 print(f"Scan Length: {scan_length} mm") # Optional debug output
57

58 # Collect and process profile data
59 for _ in range (1): # Adjust the range for multiple iterations if needed
60 data = myPing.get_profile ()
61 if data:
62 # Decode the binary profile data
63 decoded_profile_data = decode_profile_data(data[" profile_data "])
64 print(
65 f"Distance: {data[’distance ’]} mm\tConfidence: {data[’confidence ’]}%\

t"
66 f"Transmit Duration: {data[’transmit_duration ’]}\ tPing Number: {data

[’ping_number ’]}\t"
67 f"Scan Start: {data[’scan_start ’]} mm\tScan Length: {data[’

scan_length ’]} mm\t"
68 f"Gain Setting: {data[’gain_setting ’]}\ tProfile Data: {

decoded_profile_data }"
69 )
70 profile_data_list.append ({
71 ’Distance ’: data[" distance"],
72 ’Confidence ’: data[" confidence "],
73 ’Transmit Duration ’: data[" transmit_duration "],
74 ’Ping Number ’: data[" ping_number "],
75 ’Scan Start ’: data[" scan_start "],
76 ’Scan Length ’: data[" scan_length "],
77 ’Gain Setting ’: data[" gain_setting "],
78 ’Profile Data ’: decoded_profile_data
79 })
80 else:
81 print(" Failed to retrieve profile data")
82 time.sleep (0.1)
83

84 # Save collected data to a CSV file
85 output_dir = os.path.join(os.path.dirname(__file__), ’..’, ’data ’)
86 os.makedirs(output_dir , exist_ok=True) # Ensure the output directory exists
87 output_path = os.path.join(output_dir , "profile_data.csv")
88 pd.DataFrame(profile_data_list).to_csv(output_path , index=False , sep=’,’)
89 print(f"Data saved to {output_path }")
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Matlab codes

The Matlab optimized CPU code for the perfect acoustic reflector configuration can be found here.
This is the code for the water-air interface at 30 cm, but it can easily be modified to perform the
same simulation at 38 cm. The free field configuration, on the other hand, requires the removal of the
water-air interface.

1 % Grid parameters
2 dx = 1e-3; % Spatial step in x [1 mm]
3 dy = 1e-3; % Spatial step in y [1 mm]
4 dz = 1e-3; % Spatial step in z [1 mm]
5 Nx = 512; % Number of points in x (includes 30 cm distance + margin)
6 Ny = 256; % Number of points in y
7 Nz = 256; % Number of points in z
8 kgrid = kWaveGrid(Nx , dx , Ny, dy, Nz , dz);
9

10 % PML parameters
11 PML_size = [20, 20, 20]; % PML size in x, y, and z (20 grid points)
12 PML_alpha = [2, 2, 2]; % PML absorption in x, y, and z (2 Nepers per grid

point)
13

14 % Water -air interface at Nx/2
15 medium.sound_speed = 1400 * ones(Nx , Ny, Nz); % Speed of sound in water
16 medium.density = 1000 * ones(Nx , Ny, Nz); % Density of water
17 medium.sound_speed (1:106 , :, :) = 343; % Speed of sound in air (just after

PML)
18 medium.density (1:106 , :, :) = 1.2; % Density of air (just after PML)
19

20 % Source and sensor positions 30 cm from the interface
21 ball_x_pos = Nx - 106; % 4 cm from the grid end and 2 cm from the PML
22 ball_y_pos = Ny / 2; % centered
23 ball_z_pos = Nz / 2; % centered
24 ball_radius = 25; % Source radius [grid points]
25 ball_magnitude = 7943; % Source amplitude [Pa]
26

27 % Create the source
28 source.p0 = ball_magnitude * makeBall(Nx, Ny, Nz , ball_x_pos , ball_y_pos ,

ball_z_pos , ball_radius);
29

30 % Sensor mask at the same location as the source (monostatic)
31 sensor.mask = zeros(Nx, Ny, Nz);
32 sensor.mask(ball_x_pos , ball_y_pos , ball_z_pos) = 1;
33

34 % Input parameters for simulation with PML
35 input_args = {...
36 ’PMLSize ’, PML_size , ... % PML size
37 ’PMLAlpha ’, PML_alpha , ... % PML absorption
38 ’PlotLayout ’, true , ... % Show layout
39 ’RecordMovie ’, true , ... % Record video
40 ’DataCast ’, ’single ’, ... % Use ’single ’

type to reduce memory usage
41 ’CartInterp ’, ’nearest ’}; % Cartesian

interpolation
42

43 % Run the simulation
44 sensor_data = kspaceFirstOrder3DC(kgrid , medium , source , sensor , input_args {:});
45

46 % Visualization of results
47 figure;
48 imagesc(sensor_data , [-80000, 80000]);
49 colormap(getColorMap);
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50 ylabel(’Sensor Position ’);
51 xlabel(’Time Step ’);
52 colorbar;
53

54 % Create time array for Figure 2
55 dt = kgrid.dt; % Simulation time step
56 Nt = length(sensor_data); % Number of time steps
57 t_array = (0:Nt -1)*dt; % Time array corresponding to time step
58

59 % Visualization Figure 2
60 figure;
61 plot(t_array , sensor_data , ’LineWidth ’, 1);
62 xlabel(’Time (s)’);
63 ylabel(’Pressure (Pa)’);
64 title(’Signal received by the hydrophone ’);
65 grid on;

The code for the Matlab configuration with 2 layers (water and sand) can be found here. Note that it
is almost the same code for the 3 layers (water, mine-like, sand) if we add a layer and replace it with
the correct physical characteristics.

1 function result = ElasPropMultiMedium2(varargin)
2

3 p = inputParser;
4 addParameter(p, ’size ’, 0.08); % meters
5 addParameter(p, ’cfl ’, 0.1); % 0.4 seems to be the maximum allowed before

instability
6 addParameter(p, ’points_per_wavelength ’, 5);
7 addParameter(p, ’sim_time ’, 70e-6); % Total simulation time
8 parse(p, varargin {:});
9

10 size = p.Results.size;
11 cfl = p.Results.cfl;
12 points_per_wavelength = p.Results.points_per_wavelength;
13 t_end = p.Results.sim_time;
14

15 f_max = 115000; % frequency of the sonar
16 c0_min = 1400; % minimum sound speed in the medium (water)
17

18 dx = c0_min / (points_per_wavelength * f_max); % grid point spacing in the x
direction [m]

19 Nx = 2^ nextpow2(round(size / dx)); % number of grid points in the x direction
20 dx = size / Nx;
21

22 PML_size = 10;
23 Ny = Nx; % number of grid points in the y direction
24 Nz = Nx; % number of grid points in the z direction
25

26 dy = dx; % grid point spacing in the y direction [m]
27 dz = dx; % grid point spacing in the z direction [m]
28

29 kgrid = kWaveGrid(Nx , dx , Ny, dy, Nz , dz);
30

31 %% define the properties of the upper layer of the propagation medium (water)
32 medium.sound_speed_compression = 1400 * ones(Nx, Ny , Nz); % [m/s]
33 medium.sound_speed_shear = zeros(Nx , Ny, Nz); % [m/s]
34 medium.density = 1000 * ones(Nx , Ny, Nz); % [kg/m^3]
35

36 %% define the properties of the second layer of the propagation medium (sand)
37 medium.sound_speed_compression(round(Nx/2):end , :, :) = 2000; % [m/s]
38 medium.sound_speed_shear(round(Nx/2):end , :, :) = 800; % [m/s]
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39 medium.density(round(Nx/2):end , :, :) = 1200; % [kg/m^3]
40

41 %% define the absorption properties
42 medium.alpha_coeff_compression = 0.1; % [dB/(MHz^2 cm)]
43 medium.alpha_coeff_shear = 0.5; % [dB/(MHz^2 cm)]
44

45 %% create the time array
46 kgrid.makeTime(max(medium.sound_speed_compression (:)), cfl , t_end);
47

48 %% create initial pressure distribution using makeBall
49 ball_magnitude = 50; % [Pa]
50 ball_x_pos = 15; % [grid points]
51 ball_y_pos = round(Ny / 2); % [grid points]
52 ball_z_pos = round(Nz / 2); % [grid points]
53 ball_radius = 1; % [grid points]
54 ball_1 = ball_magnitude * makeBall(Nx, Ny, Nz , ball_x_pos , ball_y_pos ,

ball_z_pos , ball_radius);
55

56 source.p0 = ball_1;
57

58 %% The following is the position of the sensor so it coincides with the
source

59 x = (round(-Nx / 2) + ball_x_pos) * dx;
60 y = 0 * dy;
61 z = 0 * dz;
62 sensor.mask = [x; y; z];
63

64 %% define input arguments
65 input_args = {’PlotScale ’, [-2, 2, -0.1, 0.1], ’DataCast ’, ’single ’, ...
66 ’PMLSize ’, PML_size , ’RecordMovie ’, true};
67

68 % run the simulation with PML inside
69 sensor_data = pstdElastic3D(kgrid , medium , source , sensor , input_args {:});
70 result.sensor_data = sensor_data;
71

72 % 3D representation of the monostatic sensor
73 voxelPlot(source.p0);
74 title(’Position of the source ’);
75 voxelPlot(cart2grid(kgrid , sensor.mask));
76

77 figure (3);
78 plot(result.t_array , sensor_data);
79 xlabel(’Time (s)’);
80 ylabel(’Pressure (Pa)’);
81 title(’Signal received by the hydrophone ’);
82 grid on;
83 end
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Detection of underwater mines using sonar

Lucas Pirot

Currently, underwater mines and unexploded ordnance represent a persistent threat to
maritime navigation and the environment. In submarine warfare, detecting such objects is
particularly challenging, especially when they are abandoned and buried under sand. To
address this issue, mine countermeasures have been developed that take advantage of
various technologies, including acoustic and electromagnetic waves.

Recently, new modeling approaches for ground penetrating radar (GPR) have led to
significant advancements in the detection of buried landmines. The aim of this work is
therefore to adapt the GPR methodology to enhance the detection and classification of
underwater targets using sonar systems.

To achieve this, laboratory experiments were conducted to simulate various scenarios
involving a sonar sensor, a sediment layer, and various targets. Particular attention was
given to understanding the measurements and pre-processing steps specific to the sensor.

Subsequently, extensive numerical simulations were performed to validate and compare
the results obtained experimentally. This comparison involved introducing the concept of a
perfect acoustic reflector (PAR), which is useful for retrieving the transfer functions of the
sonar-hydrophone-multilayered media system.

These experiments highlighted both the limitations and potential of the model for analyzing
realistic scenarios. Technical limitations such as the size of the water tank and sensor lim-
itations, posed challenges to fully achieving the objectives. Despite these difficulties, the
results contribute to a deeper understanding of acoustic propagation mechanisms and pave
the way for future optimizations in underwater detection applications by using the approach
of adapting the GPR methodology.
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